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Abstract

Adding a scripting language to the Embedded XINU Operating System enables real-time modification of the OS
and potentially improves development processes through faster development times and easier debugging. The Lua
scripting language was chosen for its portability, small size, fast execution time and expressive power. Porting Lua to
XINU involved implementing new sections of the XINU C standard library and configuring Lua for the limitations
of the embedded platform. As a result, core Lua functionality is usable in XINU C programs. However, the Lua
standard libraries are not yet functional, preventing full use of Lua’s capabilities. Future work, such as integrating the
Lua interpreter with the XINU shell, can build on this foundational project to further enhance XINU.

1 Introduction
The Embedded XINU operating system is an “academic” operating system: Designed for use in college-level courses,
it is smaller and less featured than a commercial operating system. This makes it easier for students to learn and under-
stand the concepts presented with XINU and provides ample opportunities for professors to assign the implementation
of new features as coursework. Embedded XINU, given its primary deployment on Linksys WRT54GL routers, is
particularly suited for Operating Systems, Networking and Programming Language courses, and it is also used for
embedded systems research [MSCS 2011].

XINU is developed using the C programming language and MIPS Assembly language. All development or re-
search for this operating system follows a similar work flow: First, the new feature is designed and programmed on a
normal computer. It is then integrated with the standing XINU code. Because XINU is deployed on Linksys routers,
a cross-compiler is used to compile and link the code. Unlike most compilers, which turn high level language code
(such as C programs) into the machine code of whatever computer they are running on, cross-compilers are designed
to transform the high-level code into machine code for a different platform. Once XINU has been compiled with the
new feature in place, the operating system is deployed onto one of the Linksys routers. The new feature can then
be tested; the tests would have been written at the same time as the feature so they too could be compiled into the
operating system kernel. If the new feature fails its tests or new test cases are thought of, the system must be taken
offline and the work flow restarts. This process leads to frustratingly slow development as compilation and deployment
consume more and more time. The ability to prototype and test features dynamically while the system is deployed
could shift time back to simply developing features and tests. A solution to this problem is the implementation of a
scripting language for XINU.

A script is a small program used to automate or simplify tasks. The languages used to write scripts tend to be
interpreted instead of compiled. That is, instead of compiling into an executable file, a program called an interpreter
executes the instructions in a source code file on the fly. Because there is no need for recompilation, development is
can proceed directly from programming to testing. Consider how this could change the XINU work flow. To begin
developing a new feature, the developer launches the interpreter on the deployed XINU system. Programming and
testing the feature then occurs in the interpreter until the developer is satisfied, at which point the new feature can be
solidified with either a C program or as a script. This way, the number of iterations of the development cycle can
be reduced, and proofs-of-concepts and prototypes for either C or the scripting language can be created. Due to the
scripting language, the problem of the slow development process is reduced if not outright resolved.

Of course, this is not the only advantage a scripting language can bring. What may take several dozen lines of
boilerplate code in C may be only a few lines in a scripting language. Instead of only being able to use the imperative
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or procedural programming style of C, object-oriented or even functional programming paradigms become available;
such languages are called “multi-paradigm”. Scripting languages help produce solutions that may be simpler or more
elegant than those created with other programming languages.

Based on these considerations, I chose to port the Lua scripting language to Embedded XINU. Lua is a lightweight,
multi-paradigm language designed for embedding with other languages [Ierusalimschy 2003]. Thanks to this design
goal, it has a small memory footprint—a full implementation uses less than 250 KB of memory—and has an excellent
system for embedding and extending with C [Lua.org 2012]. These two features mesh well with XINU, which is
written in C and, as an embedded operating system, must be usable on systems where memory is a limited resource.
Also, Lua is highly portable thanks to a large number of configurable features and can be compiled on any platform
with a full C standard library. A more detailed discussion of Lua and its features can be found in section 2.1. Lua is a
small and powerful language that works well in the limitations set by XINU and the embedded systems.

The goal of this project was to integrate the Lua interpreter, which uses a register-based virtual machine to execute
scripts, with the Embedded XINU shell. This would allow the use of Lua as a stand-alone language and as an embed-
ded tool in C programs. Porting Lua involved configuring the language and resolving incompatibilities between the
language and XINU’s implementation of the C standard library, which is discussed in section 2.2.

1.1 Related Work
The eLua (or “embedded Lua”) project aims to bring Lua to a wide variety of embedded systems [Marinescu and Sutter 2011].
eLua runs on the “bare metal” of a system with no operating system. In fact, the project is organized by the differ-
ent processors that eLua can run on instead of by the operating systems that can use it. eLua allows a Lua script
(with possible C integration) to work on any of the supported systems without modification. However, there is no
implementation of eLua for the Linksys WRT54GL routers, which is the primary platform for Embedded XINU.

2 Methods

2.1 The Lua Scripting Language
As mentioned in section 1, Lua is a lightweight, multi-paradigm scripting language with a history of use in embed-
ded programs. It was originally developed in 1993 by the Computer Graphics Technology Group at the Pontifical
Catholic University of Rio de Janero, Brazil, and it is currently maintained by the Lablua group at the same institution
[Lua.org 2012]. In the following years, Lua found use in the game development industry where it is used in conjunc-
tion with a low-level game engine (which controls things like in-game physics, sound and graphics) to create a full
game. Beyond its use with embedding and extending, Lua is small, fast and portable.

An embedded language is generally used in other programs to provide additional functionality. For example, Lua
is designed for embedding in C programs. It capitalizes on this by providing tools that cover C’s weaknesses:

“Lua is a tiny and simple language, partly because it does not try to do what C is already good for,
such as sheer performance, low-level operations, or interface with third-party software. Lua relies on
C for those tasks. What Lua does offer is what C is not good for: a good distance from the hardware,
dynamic structures, no redundancies, ease of testing and debugging. For that, Lua has a safe environment,
automatic memory management, and great facility to handle strings and other kinds of data with dynamic
size” [Ierusalimschy 2003].

To further this end, Lua has a concise and consistent C API that is easy to get started with and use. The central idea
is a Lua state, which is similar in concept to a thread of execution and all the data associated with it. The Lua state
maintains a stack that is used to push and pop values and arguments to functions in the program. Using the stack
and the Lua state is straightforward, especially since the documentation clearly shows how each function in the API
interacts with the stack. By design, Lua is one of the simplest solutions when it comes to embedding.

Another advantage to Lua is its extensibility. That is, it is easy to use third-party libraries—even those written in
other languages like C, C++ and more—to add new functionality to Lua. For example, a function that is slow in Lua
and causes a bottleneck in the script’s execution time can be rewritten in C to remove that bottleneck and speed up the
script as a whole. Extending Lua turns it from a small scripting tool into a language that can be used in any situation.

The size of a full Lua implementation was another factor in choosing it for this project. An embedded platform has
a limited amount of memory available, especially when compared to the resources available to a normal workstation
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PC. Fortunately, Lua is very small: At only 20,000 lines of ISO C source code, the compiled library (which is the core
of the language) is only 243 KB. The interpreter itself, which is used to execute stand-alone Lua scripts, is another 182
KB when compiled with all of the Lua standard libraries [Lua.org 2012]. Lua’s memory footprint is tiny, even when
considered in the context of an embedded system.

Lua also performs well with another important programming language metric: execution speed. The Computer
Language Benchmarks Game, a standardized suite of benchmark programs for various languages, shows just how fast
Lua can be [Fulgham 2012]. The benchmarks are ten programs that can be implemented in many different languages.
For each language, the average execution speed for the ten benchmarks are divided by the fastest execution time of all
the languages1 to find that particular language’s median execution time. The C programming language, for example,
has a median execution time of 1.30. In comparison, Lua has a median execution time of 28.53. Comparisons with the
other scripting languages that have been benchmarked—such as Ruby 1.9, PHP, Python 3 and Perl—show that Lua is
the fastest scripting language2. Its reputation of speed is well deserved.

Possibly the most important consideration is how portable Lua is. With no modifications, Lua can be compiled on
any platform with a full C implementation [Lua.org 2012]. Even better, Lua is OS independent; it has no features that
rely exclusively on one operating system. These two traits have brought Lua onto a wide variety of platforms: “Lua
runs on all flavors of Unix, Windows, mobile devices (running Android, iOS, BREW, Symbian, Windows Phone), em-
bedded microprocessors (such as ARM and Rabbit, for applications like Lego MindStorms), [and] IBM mainframes”
[Lua.org 2012]. The eLua project mentioned in section 1.1 shows the wide variety of platforms that Lua can be used
on. The portability of Lua is obvious and well-established.

A full examination of Lua’s features is beyond the scope of this paper and would be better served by referring to
the Programming in Lua book3 or the Lua 5.2 Manual4. Instead, I will discuss two of the most important features of
Lua: the basic data types and the standard library.

2.1.1 Lua Data Types

There are eight basic data types in Lua: nil, Boolean, number, string, function, userdata, thread and table. The first
four are straightforward:

nil The nil type represents the absence of value. If a variable is not set to any value when created, it will be set to
nil.

Boolean Boolean variables are either true or false. They are used in conditionals or as flag values. nil is also
considered false, and any value other than nil or false is true. The number zero, the empty string (“”) and the
empty table ({}) in particular are treated as true values.

number Lua numbers are usually double-precision floating point type numbers that can represent any real number.
Lua does not differentiate between integers and floating-point numbers as other languages do, and instead just
uses one data type to handle both. Because the underlying data type for numbers can be configured when Lua
is compiled, few assumptions about Lua numbers can be made. However, most implementations do use the
double type.

string A string is a sequence of characters. There is no special data type to represent just a single character, so “a”
and ’a’ are equivalent, as are “Hello” and ’Hello’.

The remaining data types require a little more depth.

Functions Functions are blocks of callable code that can be passed different values as arguments, like functions in
any other language. Lua treats functions as first-class values. That is, any function can be stored in a variable, and this
is actually the behavior the Lua exhibits behind the scenes when a function is declared. Functions are created using
the function keyword:

1The language with the fastest average execution time is Intel Fortran.
2The next closest is JRuby, an implementation of the Ruby language for the Java Virtual Machine, with a median execution time of 34.52.
3Available for Lua 5.0 for free at www.lua.org/pil/#1ed. The most up-to-date edition, which was written for Lua 5.2, is available through

Amazon.
4Available for free at www.lua.org/manual/5.2/. Note that there are several differences between the last version, 5.1.4, and 5.2. The manual does

list the changes between versions.
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function hello()

print(“hello!”)

end

This is actually equivalent to:

hello = function()

print(“hello!”)

end

Both notations are completely valid in Lua. Because they can be stored in variables, functions can be passed around
in the program like any other variable. This allows for more complex scripts that can use functions in a wide variety
of ways. For example, the map function, which applies a function (passed as an argument) to a list of values, is almost
trivial in Lua. Anonymous functions can also be created by using the second function syntax mentioned above. These
are primarily used to pass small functions as arguments to eliminate the need of creating a whole new function that
will only be used for that one call. Because of their first-class nature, functions in Lua are very useful and powerful.

Userdata The userdata type is an interesting example of the Lua C API. Userdata are used when embedding Lua in C
to create more complex data types. They are essentially raw blocks of memory that can be configured and manipulated
by the programmer. Using a Lua construct called metatables, userdata can be given behaviors for common operations
such as addition or multiplication. The data found inside the userdata can be defined from a C struct. Userdata can be
thought of as a more powerful version of the normal C struct.

Threads Threads are the data type used to represent Lua’s coroutines. Coroutines (also called “cooperative multi-
threading”) are independent threads of execution. While they are somewhat similar, coroutines should not be confused
with operating system threads. Coroutines can be used on any platform—even if that platform does not support mul-
tithreading. Coroutines should be thought of as a way to organize the control flow of a program and separate different
conceptual processes and not as a multithreading tool.

Tables Lua comes with one built-in data type, the table. Tables are collections of key-value pairs, where any data
can be a key or a value. Because of this, tables are a flexible data type that can be treated as any other complex data
type. For example, a normal array is simply a table with numeric keys (or indices, as they would be called in this
case) while a dictionary structure would use strings as keys. The types of the keys do not need to all be the same, so
any of the data types listed above (including tables) can be used together in one table. A very simple object-oriented
programming (OOP) scheme can be implemented by taking advantage of this fact.

First, a table that represents the full class is created. Any class-level variables are stored in this table using strings as
keys. Thanks to syntactic sugar, someTable[“stringKey”] = someValue can be written as someTable.stringKey
= someValue, which looks exactly like field access in a C++ or Java class. Any class methods can also be stored in
this table by using the function someTable.someFunction() idiom, which stores the function as a key in the table.
The constructor for new variables of this class is created this way. The constructor would create a table as a local
variable, assign any instance variables with values are passed in as arguments. Instance methods are added to the table
using the same syntax as the class methods. Once the initialization is complete, the constructor simply returns the table
it defined, and thus a new instance of the class is created. This OOP scheme is straightforward and easy to implement
where needed.

Lua tables also have a feature called metatables that can be used to formalize more complex data types. Metat-
ables define a table’s behavior when used in certain operations. For example, all of the mathematical operators like
addition or multiplication can be assigned special behavior for a specific table. When coupled with the above OOP
scheme, metatables resemble operator overloading from C++. For example, a Set class that represents mathematical
sets (collections of unique numbers) can have union and intersection operations defined by using the addition and
multiplication operators. The metatable uses a series of keys called metatable events that are checked whenever a
particular operation is performed on a table. If that operation is defined in that table’s metatable, that definition is
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used instead of the default. Like normal operator overloading, metatables allow for more natural and powerful object
interactions.

A few last notes on tables: All tables are indexed from 1 when using numeric indices. While 0 and negative indices
can be used, they will be ignored by the table manipulation functions and will not be considered when calculating the
length of the table. Furthermore, there is no bounds checking for tables. This means, for example, if a table has only
indices 1 through 3 assigned and the program accesses index 4, Lua will not throw an error or otherwise complain.
This is actually less of a problem than it may initially seem. Any key that does not explicitly have a value assigned to
it will return nil when accessed. As long as the programmer is aware of this behavior, it can be used very effectively
in Lua scripts.

2.1.2 The Lua Standard Library

There are ten standard libraries in Lua. They range from string and table manipulation to bitwise operations and
coroutine creation. These libraries are presented as tables of functions; when used in a Lua script, they can be called
using the tableName.functionName() syntax. They are automatically loaded in the Lua interpreter and can be
accessed when embedding Lua with the C API. The ten libraries are:

Base Library The base library is something of a “catch-all”. The basic functions that will likely be used in all Lua
scripts are found here, and none of them could be easily shoehorned into one of the other libraries. The library
provides functions for the garbage collector, type checking and conversion, basic terminal output, exception
handling and assertions, table iteration and metatable access.

Coroutine Library This library is used to create, use and close coroutines. Coroutines are created by developing
a function that yields values at certain points. The yield function is provided by the coroutine library, too.
The function is wrapped inside a coroutine, which, when run, executes its function until a yield statement
is encountered. At that point it pauses execution, and the yield statement returns a value similar to a return
statement. When the coroutine is told to run again, it resumes execution from the last yield statement and runs
until it encounters another yield. The coroutine library provides all the necessary functions for using coroutines.

Package Library Packages are third-party modules or other external code that can be used in a Lua script. This
library handles finding and loading these modules. It also keeps track of all packages loaded.

String Library This library provides string manipulation. Besides common functions that find the length of a string,
change the case of its characters, or find substrings, the string library provides functions for pattern matching,
conversion of characters to their equivalent byte representations and vice versa, and string formatting similar
to the printf functions in C. Lua’s pattern matching is a light version of regular expressions, which can be
used to find groups of characters in a given string. Pattern matching can be used to extract substrings or replace
characters in a string. Unlike the other standard libraries, the string functions can be called on strings themselves.
That is, instead of using the string.functionName(someString, args) format, the function could be called
by using someString:functionName(args). The colon function call syntax passes the caller of the function
as the first argument of the called function; this is useful for both strings and the object-oriented programming
mentioned in section 2.1.1. This syntax is more expressive and natural when using strings and other objects.

Table Library Even though tables can be used in a myriad of ways, the table library is best used for arrays and lists.
For instance, the functions used to add or remove elements from a given table only do so with numeric indices.
The other functions expect a table where indices 1 to n are assigned values in sequence. Any non-numeric keys
or indices below 1 are ignored, and the first index with a nil value is considered the end of the table. The two
functions used for table iteration have been adapted to this. One function iterates over a table and returns only
the numeric indices and their values starting at 1 and proceeding in sequence. The other functions returns any
and all key-value pairs in the table, which may not have an established order. These two functions allow any
configuration of table keys and values to be used in loops for easier processing.

Mathematical Library As Lua only has the basic arithmetic operators by default, it needs a library to provide the
many mathematical functions that are commonly used in programs. The math library provides functions for
trigonometry, logarithms, exponentiation, basic ceiling and floor rounding, and random number generation.
Some mathematical constants are also provided, such as pi and “huge”. Huge is “a value larger than or equal
any other numerical value” [Ierusalimschy et al. 2006]. It is essentially a representation of infinity.
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Bitwise Library The bitwise operators found in C are not used in Lua. Instead, they are implemented as functions
in this library. Some examples are bitwise AND and OR, bit shifting, and rotating. The library is referred to
as bit32, which indicates that it is designed for 32-bit integers. All input is transformed from Lua’s standard
number type to 32-bit unsigned integers automatically.

I/O Library While the base library provides simple output, it is lacking in file and stream operations. The I/O library
provides all of these functions, which can be used to open files, read input from a file or stream, and write output
to the same. It has a few more options than the equivalent C library. For example, it is possible to read one line
(ending with a newline character) from a file at a time with this library. Temporary files are also made available.

OS Library This library provides an interface to the underlying operating system. It is primarily used for date and
time operations, though it does have functions for executing shell commands, renaming or removing files, exiting
a script early and accessing the computer’s environment settings.

Debug Library The debug library is designed for exactly what its name suggests: Debugging a Lua script. It can
access the internal workings of a script and the interpreter, providing valuable information for finding serious
problems. However, it can be somewhat dangerous; it purposefully violates certain rules set by the Lua language
standard. It is a very advanced tool that should only be used for debugging and must be used carefully.

This overview of Lua and its standard libraries sheds some light on the power the language brings to the XINU
platform. Lua is a simple language with powerful tools that can be adapted to any situation.

2.2 Porting Lua
While Lua is OS independent and relies only on a full C implementation, as mentioned in section 2.1, actually porting
it to the Embedded XINU operating system was not a straightforward task. The process was split into two phases:
configuring Lua for the new platform and resolving any dependencies.

2.2.1 Configuration

The configuration of Lua is centralized in a simple C header file called luaconf.h. This configuration file defines a
large number of constants and functions that are used throughout Lua. Some of them are for platform- or OS-specific
implementations while others control compatibility with older versions of Lua. The most important definitions are
those for the basic data types that Lua uses. For example, Lua uses the luanumber type to refer to all numbers. In
practice, luanumber is just another name for the common double floating-point type. Because the Linksys routers
that XINU is deployed on do not have a floating-point processor, luanumber was defined as an int (integer) type
instead. This was as simple as changing one line in the header file and making sure that two basic functions used for
type-casting numbers wouldn’t break. Fortunately, luaconf.h is logically laid out, has basic markers to aid searching,
and is very well commented, so finding these little side effects was a simple matter. Configuring Lua was a simple and
straightforward matter that was made easier by Lua’s design.

2.2.2 Dependencies

As previously mentioned, Lua requires a C compiler with a full implementation of the language. Unfortunately, XINU
does not have a full implementation of C. Instead of just configuring and compiling, the missing features that Lua
required had to be found and reimplemented as part of the XINU C standard library.

First, the missing dependencies had to be discovered. Simply running the Lua library through the XINU C compiler
and keeping track of the errors was not a feasible solution. Instead, the linker’s cross-reference table, which it writes
in order to keep track of the symbols needed by a program, was used to find the functions and definitions that were
included from libraries external to Lua. The cross-reference table was accessed by passing the --cref option to the
linker at compile time. To find the complete list of dependencies, Lua was compiled on a Redhat Linux system, as this
would compile correctly and find all of the dependencies. The linker produced a table like so:

fopen /lib64/libc.so.6
liblua.a(loadlib.o)
liblua.a(lauxlib.o)
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The first entry of this table is the name of the symbol, which in this case is the fopen function from the stdio.h
C header. The right-hand column shows where the definition of the symbol can be found (libc.so.6) and where
fopen is used in the Lua source code (loadlib and lauxlib). (Not every entry in the cross-reference table followed
this format. Many of the entries were just lists of functions that were not used in the Lua code.) A simple Lua
script extracted the functions used by Lua along with where in the Lua source code they are used. This script created
another list that showed which functions each Lua source file needed. The list of needed functions was determined by
comparing the list created by the scripts with the XINU standard library.

The second step was to actually implement these functions. Further analysis of the list revealed that not all of
the functions needed could be implemented by XINU. For example, all of the math functions that required floating
point numbers, such as the trigonometry functions, could not be implemented because of the lack of floating-point
processors in the Linksys routers. Furthermore, it was pointless to implement some of the other functions, such as the
error number tracking headers. They provided little additional functionality to Lua and were easily removed. In the
process of removing these dependencies, some of Lua’s standard libraries were heavily reduced, particularly the OS
and math libraries. Those two libraries had most of the functions that XINU simply could not support. That left only
the dependencies that were actually important to Lua.

Implementing most of these dependencies was not difficult. Most of the functions were well documented enough
that the basic mechanism for them could be determined just by reading the documentation. The most difficult exception
to this was the setjmp.h header. Setjmp and longjmp are a pair of functions that store the state of the processor—
represented by its registers—in an array. Longjmp is used to reset the processor back to the state that was stored in
the array by setjmp. This particular header is not widely used, and most documentation for it focuses on how to use
it without many clues to how it actually works. After much research, the solution of using a pointer to an array of
integers to store the processor state was eventually found. Fortunately, most of the dependencies were easier to resolve
than this, and Lua was soon compiling on XINU.

2.3 Testing
Several test cases were written for this project. As mentioned in section 2.2.2, the functions written to fulfill missing
pieces of the XINU C library each had a test case written for them. Once the full Lua library was compiled, a test
case specifically for embedding Lua in C was written. The test case creates a Lua state, performs some arithmetic and
string operations with it, and closes it. While this undoubtedly sounds straightforward, actually getting the test case to
work was not.

The first major problem was found in lua_newstate, the function that actually creates a new Lua state. It was
eventually traced to a function that initializes memory-sensitive segments of the state. If that function does not return
an OK signal, the state is closed prematurely and the test case fails. To protect against faults that would prevent the state
from being closed correctly, the aforementioned setjmp facilities were used. The array used to store the processor
state, called a jump buffer, was stored in a struct along with the status code the function would return. If the status
code there was an OK signal (represented by the integer value 0), the memory-sensitive function would also return
an OK signal. However, the function actually returned a large negative value when tested, such as −2,147,153,304.
Some investigation eventually revealed that this value when translated to hexadecimal was the exact memory location
of the function call to the memory-sensitive function. Further testing was carried out by rearranging the source code,
which changed the position in memory of that function call and revealed that the large negative error code was in fact
the memory location of the function call. Further investigation revealed that the implementation of setjmp was faulty.
There are 29 processor registers that needed to be saved, and the implementation stored them in an array of 29 integers.
However, the values were stored in array locations 1 to 29 instead of 0 to 28—that is, the last register was written to a
memory location outside of the array. The last register was the return address register and the memory location it was
written to was the memory location for the status code! When the processor state was stored, the return address was
written into the status code, so the status code became −2,147,153,304. The test case for setjmp.h never indicated
that this problem could occur. When setjmp and longjmp were rewritten to correctly store the registers, the problem
of the mysterious status code disappeared and the Lua state initialized correctly.

The second major problem was found in the Lua string table. The string table is used by the Lua state to keep
track of all strings used in the program. Since the number of strings can change wildly, the string table is initialized
to 32 entries and is doubled in size whenever the number of strings approaches the current size of the table. This can
happen fairly quickly because Lua initializes the string table with several strings that it always uses during execution.
In the XINU implementation of Lua, the table resize function, called luaS_resize, was the common point of failure
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for the several iterations of the test case. The error was consistent in that it was always the same instruction that caused
the router to crash. It was eventually found that entries in the string table were invalid pointers. This situation could
only arise due to a faulty initialization method for the entries or memory corruption at some point after initialization.
Interestingly, the problem never appeared when the test case was run as a part of the full XINU test suite, and there
were several cases where the individual test case for Lua would run correctly after the full test suite was run. Despite
several attempts to diagnose the problem, the source of this string table error has not been found. The current solution
is a series of conditionals that check if the string table entry, which is a pointer to a struct, and its constituent parts are
within the valid bounds of the XINU heap. If the entry is found to be invalid, it is skipped and the next entry is used.
This solution, while crude, catches most of the faulty table entries and prevents XINU from crashing. Thanks to this
fix, the full Lua test case was able to run as part of the full suite and by itself.

Once the full test was running, a more complex test was started. This test would check the Lua standard libraries
to perform more complex tasks and verify that the libraries were working. However, the test quickly ran into a snag.
Upon calling the function that opened the standard libraries for a Lua state, the state would throw a “PANIC” signal
and forcibly close itself, thus failing the test. XINU and router were not affected, and the test case could be run again
immediately with similar results. The cause of this panic is unclear. Investigations showed that only some of the
standard libraries would cause the problem, but there was no real indication of why these particular libraries failed.
In particular, the base library, coroutine library, table library, I/O library and OS library were known to cause the Lua
panic consistently, though the remaining libraries occasionally caused the problem. It is possible that the string table
problem mentioned above is related to this standard library problem, but it is hard to verify this connection. Until this
problem is resolved, work on Lua has stagnated.

2.4 Installing the Lua Interpreter
With the core language working successfully, porting the Lua interpreter to XINU became feasible. The interpreter
would enable the use of Lua as a stand-alone language that did not have to be embedded in C. The lack of the Lua
standard libraries was discouraging, since most of the power of Lua is locked in those libraries. Still, having a working
interpreter would be useful.

It was decided that the interpreter, which uses the core Lua C library to execute Lua scripts on a register-based
virtual machine, should be made accessible through the XINU shell. The XINU shell has several functions for mon-
itoring the system and is used to run the test suite or individual test cases mentioned in section 2.3. Adding the Lua
interpreter to the shell would allow the user access to Lua at any time while using XINU. The current source code
for the interpreter, which resides in the source file lua.c, was modified to fit the standard set for shell commands.
The new interpreter code was then linked to the existing shell code and the command “lua” was added to the list of
commands for the shell. With this simple process, the Lua interpreter was added to the XINU shell.

Unfortunately, simply adding the command did not mean that the interpreter would actually work. Upon calling
the interpreter, the router crashed with the same string table error outline in section 2.3. It is possible that the Lua
interpreter will work as it should once the string table error is resolved. In the meantime, the Lua interpreter is a XINU
shell command in name only.

3 Results
The core of the Lua scripting language was successfully ported to Embedded XINU and could be used as an embedded
language in XINU C programs. Test cases were designed for both embedding Lua in C and for testing the XINU C
library functions that were created while porting Lua, and these cases have shown the system to be fairly stable.
However, persistent memory errors in Lua have prevented further work, and being unable to use the Lua standard
libraries limits the complexity and usefulness of the scripting language. An unfortunate consequence of these errors
is the lack of a working Lua interpreter in XINU. Though the goals of this project were not completely met, a solid
foundation has been laid for bringing the Lua language to the XINU platform.

3.1 Future Work
There are several projects that could use the groundwork established by this research. The primary goal of fully
porting Lua to XINU still stands, and some of the Lua dependencies that were removed for practicality reasons could
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be restored. Fully integrating the Lua interpreter with the XINU shell and adapting it to the particulars of the platform,
such as by allowing Lua scripts to be read in from the user’s computer over the serial port, would greatly enrich both
Lua and XINU. Due to the ease with which Lua can be configured and changed, a new standard library designed for
use with XINU could easily be added to the language. This new library could provide any functions that would be
commonly used while developing for XINU. For example, functions for working with the network interface of the
Linksys router could prove useful. If XINU is ported to platforms with more complex capabilities than the routers,
platform-specific implementations of XINU Lua could be created so that Lua is not limited to the lowest common
denominator of XINU platforms. Perhaps XINU will be brought to a platform with floating-point capabilities; in that
case, the Lua floating-point math operations could be restored. Finally, Lua itself should be used in XINU. Parts of
XINU that deal with dynamic data or strings—which are Lua’s strengths—would benefit greatly from using Lua in
their implementation. The XINU shell, perhaps, could be rewritten as a C program with embedded Lua. These projects
would take advantage of the Lua foundation that is now part of Embedded XINU.
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