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Abstract

Ocean processes play an important role in local and global environ-

ments. Unfortunately, three dimensional ocean processes are poorly

understood. Computational Fluid Dynamics, CFD, provides the most

realistic simulations, but is computationally expensive. Kinematic

Models, KM, are easy to evaluate, but cannot capture the same level

of complexity.

In this project, we compare the Kinematic Model to the CFD. To

do so, we use observations of the CFD fluid particle trajectories and

assimilate those into the Kinematic Model to choose “good” parameter

values. Even with a good choice of parameters, the kinematic model

proves inadequate to capture the same level of complexity as the CFD.

We characterize the difference between the CFD and KM velocity fields

by modelling this difference as a random function. We see that a bias

corrected KM model – the random function model plus the kinematic
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model – captures a level of complexity far closer to the CFD than the

Kinematic Model alone can achieve.

1 Introduction

Ocean plays an important role in local and global environments. Although

there was significant effort to understand ocean processes, ocean processes

are not yet understood. Because ocean processes are inherently compli-

cated, scientists cannot solve problems involving these processes analytically.

Furthermore, observation of ocean processes is difficult. Observations are

often sparse in both time and space. Because these observations are time-

averaged, it is hard to deduce precise dynamics from these observations. To

overcome these difficulties, scientists use computer models to study them.

Scientists can test their theories using these models. Also, computer mod-

els can handle data scarcity by interpolating observations.[11] In last few

decades, two dimensional ocean models had many successes. These models

gave deeper insight into physical and biological processes of ocean. However,

two dimensional models have limited ability to describe three dimensional

ocean processes. Hence, scientists and mathematicians aim to develop a

fully three dimensional model. [5]

Computational Fluid Dynamics, CFD, is a system of partial differential

equations solved numerically. CFD provides the most realistic representa-

tion of ocean processes. Unfortunately, CFD is computationally expensive.

On the other hand, Kinematic Model, KM, is a system of three velocity

functions of parameters x, y, z, α, β and ε1. KM is easy to compute. How-
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ever, it does not capture the same level complexity as CFD. In this project,

we compare KM to CFD. Also, we try to make KM to mimic CFD using

statistical techniques, particle filter and random function.

2 Previous Work

KM is a system of three velocity equations. Each dimension has associated

velocity function. Velocity functions are functions of six parameters: three

Cartesian coordinates, x, y, and z, α, β and ε1.

U = −x
3

(1 − 2z)(R− r) − αy + ũ(x, y, z, β, ε1) (1)

V = −y
3

(1 − 2z)(R− r) − αx+ ṽ(x, y, z, β, ε1) (2)

W = z(1 − z)(
2

3
R− r) (3)

U, V, and W are x velocity, y velocity and z velocity respectively. α

controls the strength of horizontal velocity at the origin. α is twice the

vertical component of the vorticity. ε1 is a perturbation parameter. Finally,

β controls how strongly vertical flow affects the horizontal velocity. [6, 7]

Two computer models are used to study ocean eddy. Ocean eddy is a

circulating flow on scales of a few hundred kilometres. Eddies form when cur-

rent is obstructed. Also, they form near the edge of permanent current.[11]

Eddy is modelled as a rotating cylinder with radius one and height one.

The can has a differential rotating lid which simulates cyclonic wind pres-

sure on surface of ocean. At the top of the can, the rotating lid pushes fluid
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Figure 1: The rotating can [7]

outward toward sidewall. The sidewall redirects the flow to the bottom.

Once the fluid reaches the bottom, it is recycled by a cyclonic circulation

in the interior of the can; the circulation guides the flow to the top. All

the velocities are zeros at the boundary of the can except at the lid. Total

amount of the fluid inside of the can is conserved. Because the flow inside

the can is linear and steady, all the fluid trajectories are periodic. In order

to study mixing processes in three dimensions, this periodicity must be re-

moved. Hence, velocity equations contain time varying perturbation terms,

ũ and ṽ. [6, 7, 8]
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3 Methods

To compare KM to CFD, we use two statistical techniques; particle filter and

random function. Statistical techniques have several advantages over deter-

ministic techniques. Because model output can be estimated at untested

output, statistical techniques can reduce the number of model runs. Also,

these techniques naturally cope with data scarcity and provide a measure of

accuracy of a computer model.[9]

Let yCFD be the output of CFD and yKM (x, u) be the output of KM,

where x is three dimensional Cartesian coordinates and u is other parameters

of KM. We define error of KM as the norm of difference in velocity field

between CFD and KM.

Error = yCFD(x) − yKM (x, u) (4)

We want to minimize this error. One way to achieve this goal is to find

optimum parameter values, û, that minimize the error.

Error1 = yCFD(x) − yKM (x, û), Error1 5 Error (5)

To find optimum choice of parameters, we used particle filter method.

Particle filter is a data assimilation technique. The goal of data assimilation

is to use field/observation data to tune parameters of a computer model.

Whenever observation is available, data assimilation updates probability

distributions of parameters using Bayesian inference. Particle filter is also

known as sequential Monte Carlo. Particle filter assimilates data that arrive
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sequentially in time. Because observations often arrive sequentially in real

life application, particle filter is an ideal technique for real time simulation.

In this project, we treat CFD output as field data and assimilate the data

into KM.[2][3][4][10]

Figure 2: Pictorial representation of particle filter algorithm. Step 1. Ini-
tialization: A collection of N samples, or particles, are generated within
observation uncertainty. Step 2. Importance Sampling: When new obser-
vation is available, each particle is assigned weight according to how close
it is to the observed value. Step 3. Resampling: If weight is dominated by
only few particles, generate a new collections of particles according to the
importance weight. Step 4. Repeat 2-3 (Image source: [1])

To implement Particle Filter, we first generate observations from CFD

output. At each observation time, we add noise to CFD data within obser-

vation uncertainty. Then we initialize a collection of 5000 samples, “par-

ticles”, within model uncertainty. Upon initialization, each particle has

uniform weight. During the simulation, these particles move according to
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KM. If new observation is available, particles get assigned weights based on

how close they are to the observation value; this procedure is called impor-

tance sampling. After few importance samplings, samples usually degener-

ate: weights are dominated by few particles. When that’s the case, particle

filter perform resampling. In resampling, new collection of 5000 particles is

generated. New particles are sampled from the previous collection propor-

tionally to weights. Therefore particles with large weight are likely to be

sampled multiple times. After multiple cycle of importance sampling and

resampling, particles with “good” parameter values are expected to remian

in the collection. [3, 4]

We also characterized error using random function. Given error at

different inputs, random function approximates error at untested inputs,

b(x, u) ≈ Error. Random function naturally assimilate CFD data. And it

work reasonably well with few inputs. Before collecting data, random func-

tion assume the distribution of error to be random. When we collect data,

random function update the distribution using Bayesian inference[9]. Bias

corrected KM is defined as the sum of random function and KM.

Error2 = yCFD(x) − (yKM (x, u) + b(x, u)), Error2 5 Error (6)

Random function has its own set of parameters: mean, variance, theta,

and p. We sample 150 points from CFD data. Random function then

tune parameters for each bias function. After the tuning, properties of bias
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functions match those of error. [9]

Finally, we analysed how sensitive KM output is to change in KM pa-

rameters. We generated “truth” run with following parameter values: α =

0.35, β = 1, ε1 = 0.45. Then, all the parameters were fixed at “true” values,

except one parameter that we changed in small increments. We quantified

the relative error at grid points.

4 Results and Discussion

Typical particle filter run is shown in Figure 3. Sixty discrete points from

CFD output were used to generate observations. However, we show con-

tinuous CFD trajectory, red line, in order to make comparison between two

models easier. Red dot represent the location of the first observation. Green

dot represent the location of the last observation. In every case we studied,

KM trajectory usually do not match CFD trajectory. In general, mismatch

is larger near the boundary than it is in the interior. We also observed that

mismatch is large where velocity of CFD particle is high. Kinks on blue line

is where particles are resampled. For a typical run, particles are resampled

20-30 times defending on initial observation of CFD data. Particle Filter re-

sampled more often if the difference between KM velocity and CFD velocity

is large.

Importance sampling assigns relative weights to the particle. Therefore,

a particle that is not close to observation can get assigned large weight if it

is closer to the observation than other particles. Because KM particles are

often too far away from observations near the boundary, samples degenerates
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Figure 3: Three dimensional plot of typical particle filter run.

rapidly. Ideally, particle filter should find optimum choice of parameters.

However, it failed to do in our case.

Figure 4 shows the distribution of alpha and beta values associated with

particles after a complete cycle of particle filter. If particle filter is successful,

we expect that alpha and beta values are concentrated at specific value.

However, the distribution is Figure 4 are almost evenly spread out.

We also compared kinetic energy of KM to that of CFD. Figure 5 is

kinetic energy comparison from typical particle filter run. Where CFD par-

ticle has low kinetic energy, the difference in kinetic energy is negligible.

Because KM particles accelerate slower than CFD particle does, there are

large difference in kinetic energy when CFD particle accelerates. Further-

more, because particles mostly accelerate near the boundary, the difference

in kinetic energy is most notable near the boundary.
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Figure 4: Distribution of alpha and beta values associated with particles
after a complete cycle of particle filter

After a number of particle filter runs, we found that optimum parameter

values do not converge. Depending on which CFD data we assimilated to

KM, different optimum parameter values were estimated. Also, even with

these optimum values, there was a substantial amount of error.

There are many possible sources of error. We postulated one of the

major source of error is z velocity function, W. The mismatch in z velocity

near the sidewall is large. Because z velocity function, W, is not a function

of α, β and ε1, particle filter can not find optimum parameter values for W

function. As consequence, KM model has large permanent error that can

be reduced using particle filter.

The outcome of the sensitivity analysis in shown in 6. Relative error

grows rapidly when α changes. Although change in ε1 also introduces rela-
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Figure 5: Comparison of kinetic energy

tive error, α dominates relative error at large deviation. These observations

indicate that α is the most important parameter. Sensitivity analysis pro-

moted us to ignore β and ε1 when we generated bias functions using random

function.

Figures 7 shows the velocity field of CFD and that of KM before bias

correction. At the center region of the can, KM model does not capture the

complex dynamics of CFD. Velocity of KM at the center region is too small

compared to that of CFD. This small velocity make KM particle accelerates

slower than CFD particle.

Figure 8 shows the images after bias correction. After the bias correction,

KM field looks similar to CFD field. Unfortunately, bias-corrected field has

unstable boundary. KM is streamlined to the boundary condition of the

can. All velocities should reach zero at all boundary except at the lid. When

bias functions are added to KM, they violate this zero velocity condition.

To fix this problem, we sampled points at the boundary such that bias
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Figure 6: Truth run is generated with the following parameters; α = 0.35,
β = 1, and ε1 = 0.45. For each test, only one parameters are allowed to
deviate from the true value; other parameters are fixed.

functions are tune to the boundary condition. Also, at the boundary, we

uses KM without bias correction, while we use bias corrected KM in the

interior. Between these two extremes, we take weighted average value of

KM and bias corrected KM. These solutions are only temporary and we

need a permanent solution for the boundary problem. After this problem

is addressed, we want to generate poincare maps to check whether bias

corrected KM indeed behaves like CFD.
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Figure 7: Left: CFD velocity field. Right: KM velocity field before bias
correction

Figure 8: Left: CFD velocity field. Right: KM velocity field after bias
correction
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