
MapReduce Functions on

GasDayTM Data Using Hadoop

Darla Ahlert∗

02 August 2012

Abstract

The GasDayTM lab at Marquette University forecasts natural gas consumption for 26

Local Distributing Companies around the United States. We have a very large amount of data

that has accumulated over the past 19 years, and the lab needs a way to select and process

from all of this data to gain insight into our forecasting methods. MapReduce is a pair of

functions originally proposed by Jeffrey Dean and Sanjay Ghemawat of Google that allows

users to process very large data sets. Hadoop is a software framework created by Doug

Cutting in 2004 that allows scientists to distribute vast amounts of data across a cluster of

many Linux machines and run MapReduce over the entire data set quickly. The quick

turn-around facilitates processing of “Big Data.” As examples of MapReduce processing, we

found the most accurate type of model, most accurate forecast number, forecast accuracy over

time, and the total amount of gas forecasted each year. This is important because we are able

to explore different High Performance Computing solutions for anyone with “Big Data.” This

allows GasDay to improve our forecasting models and grow continuously as a business.

∗This work was supported by the National Science Foundation under grant CNS-1063041.

1

I spent my Summer of 2012 at a Research Experience for Undergraduates (REU) in

Marquette University’s GasDayTM lab under the guidance of Dr. George Corliss. My project with

the GasDay lab was to explore and prototype high performance computing techniques to gather

insight from a very large amount of data. This paper is addressed to my successors.

1 Background of this Research Project

Before we get into how I did the things I did and what details I learned from all of it, it is

important to understand the background of where all of this came from. Before coming to the

GasDay lab, I had never heard of anything referred to as “big data.” After arriving at the lab and

having the idea explained to me, I realized “big data” is quite simple and probably more common

then I originally thought. In short, you encounter “big data” when you have a very large data set

that is difficult to work with, whether storing, analyzing, aggregating, querying, or searching the

data [3].

The GasDay lab has been running since June of 1993. Its forecasts run every day for 26

Local Distribution Companies (LDCs) around the United States. By Summer 2012, GasDay had

over 600,000 days of GasDay forecasts. Each day has around 145 different data elements associated

with it. Now, that is a lot of data. GasDay uses three different types of forecasting models; an

artificial neural network (ANN) model, a linear regression (LR) model, and a dynamic post

processor (DPP) model. They also keep track of the amount of gas that was actually sent out by

each LDC, which is called sendout. These four pieces of information are some of the most

important in determining the accuracy of the GasDay forecasts.

For GasDay to grow our business and improve our forecasts, additional insights from all of

this data could be helpful. That is where Tom Quinn and Samson Kiware came in. Tom and

Samson, members of the GasDay lab, did some research during the Spring 2012 semester. They

learned about the Hadoop and MapReduce frameworks for handling large amounts of data. Unable

2

to get as far as they would have liked with the project, they handed it off to me when I arrived

here at Marquette University for my Summer REU. Here is what they and I found. I will explain

the MapReduce and Hadoop frameworks, how they work so well together, how I used the two to

gather some prototypical insight into GasDay’s data, and the results I gathered from all of this. I

will also discuss where the majority of my information can be found on GasDay’s Wiki page.

2 MapReduce

We begin with a general overview of the MapReduce framework. MapReduce is a set of

two functions that work together, are easily modified to fit many different situations, and allow

processing and generating of large datasets. MapReduce was introduced in 2004 by Jeffrey Dean

and Sanjay Ghemawat of Google [1]. The set of functions consists of the function map() and the

function reduce(), both written by the user, which work together to aggregate some type of

desired results. The function map() takes input and produces a set of intermediate key/value pairs:

(key, value). The (key, value) pairs then get sorted based on each key and sent to the function

reduce(). Reduce() takes the given (key, value) pairs, merges the similar keys together, and forms

a smaller set of (key, value) pairs [1].

The best way to understand this process is to show you an example. The most simple and

commonly used example is the word count example [4]. Suppose we have three text files, each

containing one of the following sentences:

File 1: This is a sentence.

File 2: This is another sentence.

File 3: This could be a sentence.

We can use the MapReduce framework to count how many times each word occurs throughout all

three of the files. Giving these files as input, the function map() goes through each file one piece of

data at a time and produces (key, value) pairs. Each word becomes a key, and the number of times

3

the word occurs is its associate value. Since map() looks at each piece individually, it is not aware

of the number of times it sees of each word and returns a ‘1’ as the value. Repeated words appear

multiple times in map()’s result list. The output of this mapper might be:

[(This, 1), (is, 1), (a, 1), (sentence, 1), (This, 1), (is, 1), (another, 1),

(sentence, 1), (This, 1), (could, 1), (be, 1), (a, 1), (sentence, 1)]

The intermediate results are sent to a sort function, which often is included in either the

MapReduce or Hadoop frameworks. The sort function sorts the data lexically based on the key in

each pair. In this example, it sorts lexicographically based on each word given as a key. The result

of the sort function is:

[(a, 1), (a, 1), (another, 1), (be, 1), (could, 1), (is, 1), (is, 1),

(sentence, 1), (sentence, 1), (sentence, 1), (this, 1), (this, 1), (this, 1)]

Finally, these sorted results are sent to reduce(), which combines all of the same keys (or words in

this example) and aggregate the values giving the total amount of times each word appears in the

data files. As it goes through the list of pairs, reduce() compares the key it is currently

considering with the key it previously had examined. If the current key matches the previous key,

reduce() aggregates the values. In this example, the first and second keys are both ‘a,’ so

reduce() adds the two values together to yield a new value of ‘2.’ Our final output is:

[(a, 2), (another, 1), (be, 1), (could, 1), (is, 2), (sentence, 3), (this, 3)]

This is a simple example of how MapReduce works. Although the data given as input may

only be three small text files containing one sentence each, this MapReduce pair could run over

millions of documents with thousands of sentences in each file [2]. Another great way to

understand is to see a pictorial example which is given below.

Figure 1 depicts a “Shape counter” example of a MapReduce program. The shapes are

given to map(). Map() runs and returns its output. The key is each shape, and the value is the

4

Figure 1: MapReduce Example

5

number ‘1.’ These (key, value) pairs get sorted. In this example, I sorted them lexically based on a

name I gave each shape, such as ‘heart’ or ’lightning bolt.’ The sorted results are sent to

reduce(), which gives the final (key, value) output.

The MapReduce framework is so powerful because the (key, value) pairs can be more

complicated then the ones given in either of these examples, as more examples given later in the

paper show. Now that we have a way to process large amounts of data, we need a way to store all

of it. That is where the Hadoop framework becomes important, so I will discuss it next.

3 Hadoop

Hadoop is a software framework that allows users to distribute large amounts of data

across multiple Linux machines, called a cluster, to store and analyze this data. We can think of

Hadoop as an operating system. A normal operating system has many different aspects, including

file management, processor management, memory management, and the management of

communication between applications. Hadoop has many of these properties, and they are

distributed across all of the machines in the cluster [2]. The Hadoop Distributed File System

(HDFS) and a Java-based API are provided by Hadoop. HDFS is like an operating system’s file

manager because it stores the input data and distributes the data to all of the machines in its

cluster when the appropriate command is given to the machine in charge. HDFS manages all of

the data that is processed. It splits the input data into multiple pieces that are normally anywhere

from 16 to 64 megabytes of data. HDFS uses replication to provide availability and keeps multiple

copies of almost everything on the cluster [2]. If at some point one of the machines fails to work,

there are other copies of everything on that machine, allowing the programs and processes to

continue with little delay. This is like an operating system’s memory manager. Also, using a utility

called Hadoop Streaming, we are able to run jobs in computer languages other than Java, such as

Python, the language I used to write my MapReduce programs [6].

6

Michael Noll’s tutorials help users set up a Hadoop cluster, and they are what we used for

this project [5]. Hadoop clusters are set up so that one of the machines in the cluster is the

“master,” and the rest of the machines are set up as “workers” or “slaves.” The master is similar

to an operating system’s process manager because it is in charge of the entire cluster and keeps

track of all of the important information, such as the state of each node. The master knows which

machines are currently idle and which are busy completing tasks [1]. Along with knowing which

machines are idle, the master keeps track of machines that are failing to work. The master

periodically sends a message to each worker node. If there is no response, the master knows that

worker is not running properly [1]. Having all of this information allows the cluster to run with

minimal errors in the process. It also allows the Hadoop framework to manage MapReduce tasks.

4 Working together

Now, I can discuss how the Hadoop and MapReduce frameworks work so well together.

Hadoop is able to control everything that is happening throughout the cluster with the assigned

master node. It keeps track of a large amount of information regarding any MapReduce task and

makes sure that each map and reduce task has no dependence on any other task, except for the

step in which the mappers feed their output into the reducers. This allows certain tasks to process

in parallel. Here is how MapReduce is started.

You can find important, detailed information related to this project on GasDay’s Wiki

page at www.wiki.gasday.com, also discussed later in this paper under the “Wiki and Other

Resources” section. The user begins by typing a command to start the cluster. Once the cluster is

up and running, the user types in another command to start the MapReduce framework. The

second command contains pertinent information needed to run the programs, such as the location

of the functions map() and reduce(), the location of the input data in the HDFS, the location in

which the user would like the final output file, and any other locations of important files that need

7

to be distributed throughout the cluster [5]. The master takes these files, splits them into the

appropriate pieces, and distributes them throughout worker nodes that are marked as idle. The

data is split in a particular way which allows each of the machines to run map() in parallel with

one another [2]. The output of map() gets buffered into memory. The locations are stored in the

master node, which notifies idle worker nodes that this data is ready for the next step in the

process. The workers then read a certain amount of data from the map() output and sort this data

based on the key given in each output pair, grouping together intermediate keys that are the same.

Reduce() runs over the sorted key/value pairs and aggregates the results. Just as the input of

map() is split in a certain way, the input of reduce() is also split in a certain way. This allows

each of the machines to run reduce() tasks in parallel with one another. The results from each

reduce() are aggregated into one final output which is sent to the location the user specifies in the

second command they give [2]. We can see this process in Figures 2 through 4, a six-step diagram

showing the MapReduce framework working with Hadoop to gather desired results from the data

distributed across the cluster.

Step One Step Two

Figure 2: Master sending map() and workers running map()

Parallelization is key to these two frameworks being successful. Suppose, in my previous

8

Step Three Step Four

Figure 3: Map() output gets sorted and sent to reduce()

Step Five Step Six

Figure 4: Reduce() output is aggregated into one final output

9

word count example, we had 500,000 text files with a million words in each file. Running

MapReduce over this data using only one computer will work, but it would take a long time. The

ability to run MapReduce over this data using multiple machines potentially speeds the process

up, but it is necessary to add in the time it takes to split the data up onto each machine and

aggregate it back together once we have output from all of the machines. Hadoop is efficient

because it does all of this work for us, and we are able to run MapReduce in parallel over the

cluster, speeding up the entire process. Now, I can talk about how I used these two frameworks to

gather some prototypical results for the GasDay lab.

5 My Work

When I arrived at the beginning of the summer, Tom and Samson showed me all the

details needed to get my own cluster running, as well as a couple of example programs they wrote

and ran over the data they had gathered. This was enough to get me started. I was given eleven

machines to create my own cluster, and I was able to get Hadoop running on each machine as a

“single-node” cluster, meaning that each machine was running a Hadoop cluster within itself. The

next step was to connect all eleven machines into one cluster. After a few unsuccessful attempts, I

was able to get eight machines connected and successfully running as a Hadoop cluster. Eight

machines is better than zero, and more machines then Tom and Samson had in their cluster. I

took this as a win.

This project is intended to see if the MapReduce and Hadoop frameworks are a good

choice for the GasDay lab to analyze all of our data. Since this is not an exhaustive test of

GasDay’s data, I ran my code on about 575 data files, which contain almost 3.3 million forecasts.

There are many more data files associated with GasDay that were not included in my results for a

few reasons. GasDay switched database formats during that time. When Tom and Samson started

this project, they extracted data using the old database format, and because of this, all of the data

10

was not readily accessible to populate the cluster. Since the intent of my project was to prototype

an approach, I did not worry about extracting any more data and used only the data that Tom

and Samson originally extracted. This can be seen in the results that I have gathered. The data I

have from more recent years does not even begin to cover the amount of data that is actually in

the databases. Because of this, some of the graphs look a little strange in more recent years.

Therefore, when this project is continued, the rest of the data needs to be extracted from all of the

databases to get more complete results.

Figure 5: Total amount of gas forecast each year

I was able to complete five MapReduce programs that successfully ran over all of the data

on the Hadoop cluster. Using the three forecast models mentioned in the first section (ANN, LR,

DPP), as well as the sendout, I was able to gather some prototypical results. Figure 5 shows the

total amount of decatherms of gas forecast for each type of model as well as the actual sendout.

From the graph we can see that until more recent years, the general flow of the columns is

11

increasing. GasDay has grown vastly over the 19 years we have been running, and we are

continuing to grow today.

Figure 6 shows the mean average percent error (MAPE) for all three types of forecasting

models. Equation (1) shows how to calculate the MAPE for each model. To find the average

percent error for each day, you take the absolute value of the actual sendout subtracted from the

forecasted amount, divide the entire quantity by the actual sendout, and then multiple by 100 to

get the percent. To calculate this over an entire data set, you take the average of that equation

over all the days in the data set, giving you the MAPE.

100

n
∗
∑n

i=1 |forecasted amounti − actual sendouti|∑n
i=1 actual sendouti

, where n is the number of days. (1)

The MAPE is used for all of the graphs in this paper except for Figure 5. From Figure 6

we can see our most accurate type of model is the DPP model, whose MAPE is 4.54. The DPP

model is a little over one percent better than the other two models, and with the amount of data

we have, that is a huge difference. The next best model is the ANN model, with MAPE of 5.59.

Finally, we have the LR model, with MAPE of 5.66.

Figure 7 shows us how our forecast accuracy has changed over time. This graph, like

Figure 5, is another graph that looks a little odd in recent years due to the database format change.

Taking that into consideration, we can see that up until about 2009, the ANN and LR models have

drastically improved, and the accuracy of the DPP model has stayed somewhat the same over time.

Figure 8 shows us the accuracy of different forecast numbers. If an LDC chooses to do so,

they can run GasDay’s forecasts up to six times a day. The forecast number coincides with the

number of times the forecaster ran during that day. We can see that as the day goes on, the

forecasts generally become more accurate.

The final program that I ran over the data shows the forecast accuracy of the different

12

Figure 6: Most accurate type of model

Figure 7: Forecast accuracy over time

13

Figure 8: Most accurate forecast number

forecast numbers for each LDC. Overall, we can see some very interesting trends from these

graphs, and it makes GasDay curious to find out more about all of our data. Using the

MapReduce and Hadoop frameworks seems to be an ideal way to process and analyze a large

amount of data, which is why you are reading this paper. This project will continue on to grow

and improve on what Tom, Samson, and I have done so far. Finally, I will tell you where you can

find the information you will need.

6 Wiki and Other Resources

The Wiki I created during my Summer with the GasDay lab is intended to help you along

the way. To access the Wiki, you must be connected to GasDay’s network in the lab. The main

page is located at www.wiki.gasday.com. When you reach the main page, you will click on the

section at the top labeled [Student Projects and Research.] To access any of these sections, you

14

must have login credentials that are approved by GasDay. From there you will click on the link

located in the section labeled “Research Projects” that is labeled [Using MapReduce and Hadoop.]

The Wiki contains almost everything that you will need to either start this project over or

continue on where I left off. Some examples of material listed on the Wiki are the tutorials I used

to set up the Hadoop cluster, my system administrator log that goes along with the tutorials, great

Python tutorials, helpful Ubuntu command line tricks, important websites, and all of the sources I

used to understand the MapReduce and Hadoop frameworks.

Along with the Wiki, I copied everything related to my project onto a CD for Dr. Corliss.

Everything is also copied to the drive on the GasDay network that is specified in the Wiki.

15

*References

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–113, January 2008.

[2] J. Dean, S. Ghemawat, and G. Inc, “Mapreduce: simplified data processing on large clusters,”

in In OSDI04: Proceedings of the 6th Conference on Symposium on Operating Systems

Design and Implementation. USENIX Association, 2004.

[3] D. Kusnetzky. (2010, February) What is “big data?”. Access date: June 27, 2012. [Online].

Available: http://www.zdnet.com/blog/virtualization/what-is-big-data/1708

[4] M. Nielsen. (2009, January) Write your first mapreduce program in 20 minutes. Access date:

June 5, 2012. [Online]. Available:

http://michaelnielsen.org/blog/write-your-first-mapreduce-program-in-20-minutes/

[5] M. Noll. (2007, August) Running hadoop on ubuntu linux (single-node cluster). Access date:

June 1, 2012. [Online]. Available: http:

//www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/

[6] R. C. Taylor, “An overview of the hadoop/mapreduce/hbase framework and its current

applications in bioinformatics,” BMC Bioinformatics, vol. 11, pp. 1–6, July 2010.

16

