An Experimental Laboratory Environment
for Teaching Embedded Hardware Systems

Dennis Brylow

Marquette University
MSCS Department — Cudahy Hall
1313 W. Wisconsin Ave., Milwaukee, WI 53226
brylow @mscs.mu.edu

Abstract

This paper describes Marquette University’s efforts to
build an experimental embedded systems laboratory for
hands-on projects in an introductory hardware systems
course. Qur prototype laboratory is now serving as the
basis for a coherent sequence of class projects threaded
throughout subsequent courses in operating systems, net-
working, and embedded systems, among others. We de-
scribe the major components of our laboratory environ-
ment, how it is used in our hardware systems course, and
how this has contributed to significant improvements in
other core courses in our curriculum.

Categories and Subject Descriptors: C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems;
K.3.2 [Computer and Info Science Education]: Curriculum

Keywords: Embedded systems education, XINU, curriculum

1. Introduction

This paper presents our prototype for an experimental
embedded systems laboratory and our design for an intro-
ductory hardware systems course based on that laboratory.

The degree to which undergraduate computer science
majors study topics related to computer organization and
hardware systems varies enormously within the world of
university and college education[11]. Programs can range
from multiple required courses in digital logic, assembly

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to re-
publish, to 1L}l)ost on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

WCAE 07, June 9, 2007 San Diego, CA

Copyright 2007 ACM 978-1 59593 797-1/07/0006 ...$5.00.

language programming and architecture, to programs with
only a smattering of computer organization topics combined
with another course, like operating systems. While the com-
munity as a whole seems to acknowledge that some aspects
of computer hardware remain a core topic in the curriculum,
there is considerable debate on the proper scope and con-
tents of computer architecture courses in computer science
education. Against this backdrop, we intend to address the
shortcomings of a particularly common point in this wide
spectrum, the introductory hardware systems course aimed
primarily at second- or third-year undergraduates majoring
or minoring in computer science. (These courses are also
sometimes called an “introduction to computer architec-
ture,” or “computer organization,” or even just “assembly
language”; these titles can have significant distinctions in
meaning, but for the remainder of this paper, we will re-
fer to them collectively as “introductory hardware systems”
courses.)

There are several inherent barriers that can prevent main-
stream computer science (CS) departments from offering
well-integrated hardware systems courses. Particularly in
departments on the software and mathematical ends of the
CS spectrum, most faculty members themselves have had
only one or two undergraduate courses in hardware systems
and are reluctant to teach a course so far outside of their
research area. Hardware systems courses are among the
most likely to be assigned to visiting or adjunct faculty, or to
be relegated to an electrical engineering or computer engi-
neering department. The natural result of this is a tendency
to have hardware systems curricula that are at best loosely
coupled to the other computer science core courses, and at
worst wholly unrelated. With this in mind, our first goal in
this work can be summarized as follows:

Our hardware systems curriculum must integrate
strongly and smoothly with the other core com-
puter science courses.

Strong integration entails that subsequent courses draw and

build upon the most important themes in the hardware sys-
tems course. Smooth integration requires that this not un-
duly distort the natural contents of other courses, or hijack
the overall goals of the undergraduate curriculum.

As a matter of teaching philosophy, we prefer courses
that take a hands-on, bottom-up approach to teaching com-
plex systems, whether in software or hardware. Yet, we do
not have time for our second-year CS majors to absorb an
entire computer engineering degree within their hardware
systems course. Therefore we must draw lines of abstrac-
tion most appropriate for students primarily concerned with
software. Our second goal is then:

Our laboratory environment must allow students
to work with the lowest levels of software, inter-
acting directly with hardware.

The primary challenge here is allowing a free range of ex-
perimentation for the students without compromising the
production computing environment.

In addition to curricular challenges, we also face re-
source limitations. Our department, like many others, must
carefully choose how to allocate its space and equipment
budget. Rather than see this as a disadvantage, we view this
as a valuable focusing constraint for the current project. Our
laboratory environment has been designed from the outset
to require low investments in both cost and dedicated space,
making it suitable for adoption at other universities and col-
leges that could not afford to construct a large, specialized
facility for these purposes.

Our laboratory environment must be inexpensive,
flexible, and readily duplicable.

Finally, our infrastructure will be of greatest use if it not
only supports a wide variety of teaching needs, but also en-
ables a closely related research agenda. This brings us to
our fourth major goal:

Our laboratory environment must serve as a plat-
form for research and development of embedded
and real-time software systems.

Embedded systems are an important class of comput-
ers in the modern world, deeply intertwined in applications
ranging from medical devices to vehicle control, from con-
sumer appliances to advanced communication equipment.
Embedded systems are often microcosms of more complex
computer systems; they possess more limited resources, yet
are representative of many of the most important concepts
covered in a hardware systems curriculum.

In the following sections, we present our prototype for a
laboratory environment designed to support all of the afore-
mentioned goals. Our design emphasizes real exploratory

exercises; students run their software directly on the em-
bedded processor, without simulators or emulators. The
target platform is an inexpensive embedded system com-
monly available in home electronics stores, and our soft-
ware is open-source. This paper is intended to be the first
of a sequence outlining our prototype design and its impact
on our courses, in this case, our hardware systems course.
For the remainder of the paper, we concentrate on previ-
ous and related work, describe our laboratory environment
hardware and software, and outline the resulting hardware
systems course design.

1.1. Prior and Related Work

Purdue University’s XINU Laboratory[5] has served as a
model of experimental, hands-on project environments for
two decades. Originally designed to teach operating sys-
tems courses on the PDP-11 platform, the XINU operating
system was later ported to the Motorola 68000 processor[9]
and the Intel x86 architecture[7]. Various extensions were
made to support highly successful courses in networking
and internetworking[8, 19]. Although highly successful at
Purdue, several factors kept the Purdue XINU Lab from
being easily duplicated elsewhere. As the PC market ex-
ploded, making surplus Intel x86 systems plentiful, a very
narrow range of supported network interface cards made it
difficult for other schools to acquire compatible target ma-
chines. More importantly, the Purdue lab relies on both
custom-made hardware and software that requires special-
ized knowledge, as well as a fair amount of time and money,
to produce elsewhere. Even at Purdue this laboratory scaled
poorly; this author was an integral part of a year-long ef-
fort to revitalize and expand the Purdue XINU Lab to triple
its original size in 2001, an effort that exposed many of the
shortcomings of the customized components required.

The TinkerNet Project[10, 20] reproduces the overall ar-
chitecture of the Purdue XINU Laboratory without the need
for specialized hardware or a current port of the XINU op-
erating system. Designed to support hands-on, bottom-up
projects in networking courses, TinkerNet relies on a base
operating system with working network driver on the tar-
get platform in order to do its work. However, courses that
build software at the operating system driver level or below
cannot safely make this assumption.

Several others have proposed various embedded systems
laboratories. Northeastern[2] and Cal Poly State[12] have
both proposed courses targeted at the Blackfin DSP archi-
tecture. Michigan State[4] proposed integrating embed-
ded systems concepts across several of their courses, but
did so using a variety of simulation tools and platforms.
University of Alabama[17] has incorporated a sequence
of seven courses focused on embedded systems into their
core computer engineering curriculum. Their platform is

based on the VMEDbus architecture, and their methodology
is quite similar to ours, albeit on a much larger, computer
engineering-focused scale that may not translate easily into
a computer science major.

FernUniversitit Hagen[1] has proposed an impressive ar-
ray of web-accessible laboratory infrastructure for micro-
processors, which faces some of the same remote access
and reservation problems we have dealt with.

On the non-academic side, the OpenWRT Linux
community[16] has been instrumental in exploring and doc-
umenting the platform we have adopted, and continues to
provide a high-quality Linux distribution for this system.

2. The Platform

In selecting a target platform for our hardware sys-
tems laboratory, we desired an embedded RISC architec-
ture with multiple peripheral types, and at least one simply-
programmed I/O channel. We wanted an inexpensive, read-
ily available configuration that could support basic assem-
bly language assignments for exploring aspects of the ma-
chine, yet one that was not too small to support projects of
realistic complexity. There are many possibilities, but we
have found success with a line of consumer network de-
vices that are based upon a sophisticated, general purpose
embedded platform.

Our laboratory is based on the LinkSys WRT54G[14]
series of wireless routers, which ships with a wide area net-
work (WAN) port, four local area network (LAN) ports,
and a wireless network interface. Internally, the WRT54G
contains one of several models of the Broadcom BCM
47XX/53XX family of “system-on-a-chip” (“SoC”) plat-
forms, a 200MHz, 32-bit embedded MIPS[18] architecture
with 16 MB of RAM, and 4 MB flash ROM. (Some newer
models are now shipping with smaller memory configura-
tions.) Unpopulated pins on the circuit board include two
UART serial ports and a JTAG interface suitable for inter-
facing directly to the processor.

With only slight modifications, we have access to two
serial ports on the embedded device, and the first of these is
already preconfigured as a firmware console interface.

Like many modern architectures, the WRT54G boots to a
flexible firmware that performs basic power-on testing, con-
figures devices, and selects an operating system (O/S) to
boot. Under normal circumstances, the WRT54G selects a
Linux- or VxWorks-based embedded O/S image in the flash
ROM, and proceeds from there. With a couple of simple
Common Firmware Environment (CFE)[13] commands at
the boot prompt, the system can instead perform a relatively
complex remote boot, in which it 1) configures the network
interface, 2) downloads a file into RAM over the network
connection, and 3) boots the kernel image it has loaded into
RAM. In this way the system can be made to run student-

produced code directly, with only a few seconds delay. At
the same time, the production firmware image on the device
is not disturbed, and the system can once again become a
fully-functional wireless router after merely a power-cycle.

WRTS54GL MAX233A DB9F
JP2 33y DCE
1
Pt e
o—'—. R At
c i =z_”m Tu:u.t5
e i e I
Cood2 —plrn Toou P2
.c i _ECH cz.;“
6_ D_'s_ ey v:z+£| 4
‘:)__g_ 12|, it
o—to L], whel L |
Fatz 14
—_— —

oD D

. I?

ES DBOM

DTE

Figure 1. Dual Serial Transceiver

2.1. Input and Output

The unpopulated, internal serial port pins for the
WRTS54G are operating at the processor’s TTL supply volt-
age, 3.3 volts. Two important pieces are needed to establish
serial communications: 1) a serial transceiver to convert the
TTL logic voltages into RS-232 voltages, and 2) an external
jack for connecting a serial port.

The first problem can be conquered using a dual RS-232
transceiver (Figure 1) that takes care of producing both posi-
tive and negative RS-232 voltages of higher magnitude than
the power supply voltage.

External jacks are not necessary for experimentation, but
long-term laboratory application is safer and easier if the
serial ports are accessible while the device is closed in its
case. Our project website[3] details construction of the
transceiver circuit and modification of the plastic case to
make room for standard DB serial connectors.

3. The Warzone

The WRT54G can be used alone at any workstation with
a serial port and a network connection. This configuration
may be suitable for very small laboratory installations con-
cerned only with hardware systems assignments, but to take
maximum advantage of the power of our platform it is far
more useful to collect many WRT54G’s as a pool of back-
ends doled out by a central server. Particularly in the context

Serial Consoles

Special Purpose XINU Backends

Serial Annex
(optional)

General Purpose
Laboratory Workstations

—=—

Private Network

Production Network

Figure 2. Laboratory Topology

of more advanced courses in networking, it is best that this
pool of backends be managed on a private network, isolated
from the production network by a gateway.

Figure 2 outlines the layout first used at Purdue[8] and
later nicknamed the warzone by the TinkerNet Project[20].
A cadre of dedicated target machines resides on the private
network (warzone) where students may load and run exper-
imental kernels on demand. These dedicated, backend ma-
chines load a new O/S image from the central server across
the network each time they reboot, allowing students to re-
fresh the image frequently as they build their system.

Marquette’s warzone is managed by a single G5 XServe
with one network interface on the production network, and
a second network interface connected to a private switch
that links all of the backend machines to their own sub-
net. Our infrastructure can handle a heterogeneous mix of
backend architectures, allowing both newer and older mod-
els of backend, as well as a mix of alternative architectures
(RISC machines, CISC machines, processors from a vari-
ety of manufacturers.) This heterogeneity can be both cost
effective and a desirable pedagogical feature.

It is important to note at this point that since our back-
ends are in fact fully operational wireless routers, the wire-
less NICs should normally be deactivated within their na-
tive firmware, in order to protect both the warzone and the
production wireless network from stray traffic. In more
advanced networking courses, explicit use of the wireless
interface may be highly desirable — the impact of this on

nearby production wireless networks should be carefully
gauged accordingly. We keep our wireless interfaces turned
off, the antennae unscrewed, and the routers locked in a
grounded metal case during the normal course of hardware
systems and operating systems courses.

3.1. Serial Ports

Collected into a pool of backends, the number of in-
terfacing serial ports required quickly exceeds the number
present on any typical server machine. As shown in Fig-
ure 2, an optional serial annex can provide dozens of addi-
tional serial ports relatively cheaply. Details of our serial
annex configuration can be found at the project website[3].

3.2. Reservation System

The central server regulates access to the backend con-
sole connections, kernel upload area, and warzone network
via a simple reservation system, called the console daemon.
The console daemon is network accessible, and can be con-
tacted from any general purpose workstation. In this way,
actual development and compilation can be carried out from
any machine on the Internet; students compile their project,
connect to the console daemon, upload, boot the backend,
and interact with the running operating system console at
will. We have automated this entire process using a simple,
extensible script built on top of the console daemon utilities.

The console daemon system allows users to request
backends by name or by type. Associated tools let users
view the status of the entire backend pool, and manually
bump users that have held a backend connection for longer
than an administrator-configured maximum time period.

The software for the console daemon is largely based on
the connection server (“cserver”) daemon developed orig-
inally at Purdue[8]. Our contributions have been to port
the original tools to a modern dialect of C, update them to
work with current Linux and Solaris distributions, add TCP
Wrapper security controls to the network daemon, adapt it
to a new serial annex, and write proper documentation for
the system. The code for the console daemon and front-
end utilities is now available as an autoconf-enabled release
from our website[3], and builds successfully on a wide va-
riety of POSIX-compliant platforms. Our significant im-
provements to the console daemon have been released as
open source with the permission of original contributors.

3.3. Rebooting

When developing complex systems, students can expect
some crashes. In stand-alone installations a developer re-
sets the target machine, but in a larger scale laboratory en-
vironment students may not have easy access to the backend
machines, and remote users may have no access at all.

Remote reset of backend machines is accomplished in
Purdue’s laboratory using special, custom-made hardware
and software designed by this author in 2001. Cognizant
of the high costs in manpower and equipment that this en-
tails, we have sought a simpler, readily scalable solution.
Fortunately, a laboratory targeting embedded devices with
no moving parts is amenable to simple powercycling, rather
than formal resetting of the motherboard. Various serial-
controlled power strips are now commonly available for ap-
plications in server rooms at a fraction of the cost of custom-
building a comparable system of serial-controlled, solid-
state relays. Our project website[3] details the off-the-shelf
hardware and open-source software we have employed for
this.

Using such hardware, remote users of the laboratory can
send a command via the console daemon to immediately
powercycle their backend with a single key stroke.

An important consequence of this feature is that backend
and server hardware need not be adjacent to student work
space at all. The laboratory hardware can be locked away
on a rack in a data closet or server room, and courses can
be taught using the infrastructure from any general purpose
computer laboratory.

Having detailed the basic hardware requirements of the
experimental laboratory, we now describe the use of this
equipment in the context of a hardware systems course.

4. The Hardware Systems Course

Marquette’s introductory hardware systems course
(COSC 065) is three credit hours and is designed to meet
the “Architecture and Organization” requirements (AR1
through ARS8) in the ACM/IEEE Model Curriculum[15],
corresponding closely with the model course CS220 Com-
puter Architecture.

The stated goals for COSC 065 are as follows. Students
completing the course successfully will be able to:

e Understand the principles underlying computer hard-
ware systems, and see how they shape software,

e Define and describe the purpose of major components
in modern computer hardware, and understand how
they work together to accomplish computing,

e Solve problems in assembly language for a modern
computer processor.

Additional, unstated goals for the course include:

e Preparing students with platform-specific knowledge
they will need for subsequent courses in operating sys-
tems, networking, embedded systems, and compilers.

e Familiarizing students with development tools they
will need for system software development in C or
other lower-level languages.

The current textbook for the course[6] covers the
essential topics suggested by the ACM/IEEE Model
Curriculum[15] for a hardware systems course targeted at
computer science majors, and the course outline follows
more or less along the book’s outline.

e Digital logic, combinational and sequential logic,
e Data representation,

e Processors and pipelines,

e Instruction sets, both RISC and CISC,

e Assembly languages and addressing modes,

e Activation records,

e Memory and storage, virtual memory and caching,
e 1/0O, buses, and interrupts.

All of these topics can be directly addressed with hands-
on laboratory assignments that both build on previous topics
and serve as excellent preparation for subsequent courses.

The textbook is supplemented with technical documen-
tation for the MIPS architecture and instruction set, along
with copious examples provided in lecture.

4.1. Laboratory Exercises

The first third of the course supports lecture topics with
digital logic assignments. Students build combinational
logic circuits out of 74LS00-series logic gates, resistors,
switches, and LEDs. The fifth laboratory culminates in
building a full-adder, which n lab teams then combine to-
gether into an n-bit ripple adder.

As the lecture moves into machine and assembly lan-
guage topics, the laboratory projects move to writing MIPS
assembler programs that run directly on the WRT54G back-
ends. As outlined in the next section, a small loader and op-
erating system base supports all of the system library calls
typically invoked by students learning assembly program-
ming. The infrastructure is sufficiently flexible to support
assembler projects that bear no relationship to projects in
later courses, but we prefer the projects that build steadily
toward our long term goal:

e Basic assembler operations; Typical assignments in-
clude simple arithmetic calculations (exponents, aver-
ages,) and table-driven output (Celsius to Fahrenheit
conversion chart, pounds to kilograms, etc.)

e [/O, converting between character and integer repre-
sentations; e.g. simple calculator with input in several
possible bases, or perhaps iterative greatest common
denominator.

e Functions and calling conventions; e.g. breaking the
calculator into multiple functions or building functions
for printing out chessboard states.

e Recursion and stack frames; e.g. classic recursive
problems like Towers of Hanoi, N-Queens or Knights-
A-Visiting.

e Pointers and memory; e.g. allocating memory to store
and reverse an arbitrary list of integers, or exploring
the behavior of the memory allocation subsystem.

e Device I/O; e.g. address serial port control registers
directly to send and receive characters. As an added
challenge, this requires interpreting technical docu-
mentation for the 16550 UART interface.

e Interrupts; e.g. write a small interrupt handler for
counting timer clicks or perhaps using the UART in
asynchronous mode.

The tools for interacting with the laboratory environment
are no more elaborate to use than invoking a typical simu-
lator, or executing a program at the command line.

4.2. Embedded Programming Environment

Students run their code assembly code by first linking it
to a starter kernel and then running a tool that automatically
uploads the executable to the server, restarts the backend,
and connects to the serial console. The starter kernel is a
relocatable object file containing a simple boot loader and a
small library of useful system functions. Software is assem-
bled and linked using a standard version of the Gnu Com-
piler Collection (gcc) configured as an architectural cross-
compiler targeting the embedded MIPS-32 platform. Stu-
dents need only the starter kernel image and an appropri-
ate Makefile in the current directory, and the lab tools and
cross-compiler in their path.

The starter kernel is a stripped down XINU image with a
single process, the I/O device drivers for the serial ports, and
the basic library functions typically used by introductory
assembly programmers:

e getchar() and putchar(), getInt() and printInt(),
e printf(),

e malloc() and free(),

e sleep() and halt().

The XINU image runs without kernel protection, so stu-
dents have the freedom to explore the entire range of RAM
and memory-mapped /O regions on the device. Over the
course of the term, they can take over control of the serial
ports directly, and we provide hooks for them to install in-
terrupt handling code, as well.

In the operating systems course (the following term) stu-
dents see the source code for the starter kernel, and use
their own serial driver as a starting point to replace or ex-
tend many components of the system. By the end of the
two term sequence project partners in the course will have
co-authored most of approximately 6,000 lines of C and as-
sembly source comprising a preemptive, multitasking em-
bedded operating system with a variety of components and
peripherals.

5. Discussion

In this section, we assess the effectiveness of these cur-
riculum changes by evaluating the extent to which we have
met our initial design criteria.

5.1. Integration

Our first goal was to develop a hardware systems cur-
riculum that would integrate strongly and smoothly with the
other core computer science courses. Indeed, the current in-
carnation of hardware systems draws directly upon material

in its prerequisite course on discrete and combinatoric alge-
bra, (representation, logic), and deliberately complements
topics, (recursion, functional decomposition, etc.), from the
data structures course taken concurrently.

Furthermore, hardware systems dovetails directly into
our operating systems course, which actually builds upon
assignments from hardware systems. Ongoing revisions
to later courses in compilers, networking, and embedded
systems will also build directly upon earlier course assign-
ments in both hardware systems and operating systems. In
all of these cases, our new thematic approach has only mod-
erately impacted lecture content, while significantly focus-
ing practical assignments.

5.2. Interaction

We have also met our goal of building a laboratory envi-
ronment that allow students to work with the lowest levels
of software; our hardware systems assignments manipulate
memory and registers directly, and interact with I/O hard-
ware and interrupt processing. The operating systems as-
signments add process context switching, timer preemption,
memory management, and I/O buffering. Proposed net-
working assignments deal directly with network interface
drivers and the construction of a network protocol stack.

5.3. Scalability

Our laboratory environment is inexpensive, flexible, and
readily duplicable, addressing our scalability goals. Indi-
vidual backend units cost about $50, with around $10 of
additional hardware required for the serial port transceiver.
Connecting serial ports cost approximately $40 per port in
bulk (using either a large terminal annex, or USB-enabled
serial converters on a hub for smaller quantities.) Assum-
ing that a suitable server and spare network connections are
on hand, the total amortized cost per backend unit is less
than $125 for a small installation. Allowing for a deluxe in-
stallation with rebooting hardware, surplus serial ports, and
assorted cables, a deluxe laboratory with 30 backends still
costs under $150 per unit.

A single backend machine is typically suitable to provi-
sion four teams of two students each for a course in hard-
ware systems or operating systems; courses in embedded
systems and networking may require a higher ratio of back-
ends to students for projects that make use of multiple back-
ends per running assignment. For example, the Marquette
laboratory is a medium-sized installation of 10 Linksys
WRT54G backends, and 10 PowerPC G3 backends.

We have taken great pains to use off-the-shelf hardware
and software tools to build our laboratory; where this has
not been possible, we have carefully documented our hard-
ware work on the project website[3], and made our software

freely available.

Other schools are already taking advantage of this; two
are in the preliminary stages of reproducing our laboratory
design in their contexts, and several others have expressed
an interest.

5.4. Research

Our laboratory environment also meets the goal of serv-
ing as a platform for research into embedded and real-time
system software. Based upon our strong results in building
this initial prototype, we have received external funding to
support research into IP telephony and real-time scheduling
on this platform. The limited resources and interesting pe-
ripherals already present on this platform make it an ideal
target for investigating real-time and interrupt-driven issues
in realistic embedded systems. In terms of longevity, the
platform is well supported by the Linux community, and
the primary vendor has shown every sign of continuing to
support and improve this product family.

5.5. Student Evaluation

Student reaction to introduction of our laboratory envi-
ronment has been overwhelmingly positive. Undergradu-
ates have volunteered their time over semester breaks to
make serial transceiver modifications to backends. One stu-
dent who had already taken a prior incarnation of the hard-
ware systems course sat in on the entire semester of the new
course in order to experience the practical laboratory envi-
ronment.

Our department has only just begun a rigorous assess-
ment plan this past term, so we do not have hard data to
compare student outcomes against the earlier, unfocused in-
carnation of the same course. Anecdotal data, however, sug-
gests marked improvement in our undergraduates’ prepara-
tion for subsequent systems courses, and increased interest
in embedded devices and networking.

6. Conclusion

We have presented our design for an experimental labo-
ratory environment used to focus and enhance practical as-
signments in the assembly language phase of our introduc-
tory hardware systems course. The laboratory is scalable,
inexpensive, and comprised entirely out of readily available
parts and software. Several other schools are already work-
ing to duplicate our infrastructure for their own courses.

The hardware systems course we have developed in con-
cert with this laboratory integrates smoothly into our ex-
isting computer science curriculum, but also makes possi-
ble a coherent sequence of cross-course class projects that
have significantly enhanced several of our other offerings.

Our operating systems course builds directly upon the hard-
ware systems course, allowing students to build their own
small, but powerful embedded operating system within the
two terms of their second year.

Our work focuses on hands-on class projects that en-
courage students to explore both the lowest levels of hard-
ware/software interaction and the breadth of embedded sys-
tems acting in the modern world. Our chosen architecture is
a ubiquitous home networking appliance, which despite its
lowly intended application, makes for a powerful platform
for devising a wide range of challenging assignments.

6.1. Contributions

Our contributions include:

e a modern adaption of the “warzone” laboratory design
using off-the-shelf hardware and open-source soft-
ware,

o the first public release of a comprehensive set of
console tools and reservation management software
specifically for running a laboratory of this type,

e the first port of the venerable XINU operating system
to a modern, embedded RISC architecture,

e a layer of wrapper functions over the XINU system
calls appropriate for use by introductory hardware sys-
tems students, and,

e anovel hardware systems curriculum design that meets
the ACM/IEEE model curriculum guidelines while
supporting a thematic focus on embedded systems
software, beginning in the hardware systems course
and continuing through potentially at least three more
semesters.

Our future work includes fleshing out design plans for
more embedded XINU-based coursework in advanced op-
erating systems, networking and internetworking, wireless
and distributed computing, and embedded real-time sys-
tems, all on this platform. The first full release of embed-
ded XINU is planned for this summer, and we hope to ex-
tend our hardware and software to support an IP telephone
within the year.

We gratefully acknowledge the assistance of Douglas
Comer (Father of XINU), and of Cisco Systems and
Linksys. The OpenWRT Linux community has been a
source of much information that would otherwise have re-
mained hidden. Many thanks go to the persevering students
who have worked hard to make the Marquette Systems Lab
a success, both by enduring their required courses, and giv-
ing graciously of their time just to make things work better.

References

(1]

(2]

(3]
(4]

(5]
(6]
(7]
(8]

(9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

H. Béhring, J. Keller, and W. Schiffmann. Remote opera-
tion and control of computer engineering laboratory experi-
ments. In WCAE 2006 Workshop on Computer Architecture
Education, 2006.

M. Benjamin, D. Kaeli, and R. Platcow. Experiences with
the blackfin architecture in an embedded systems lab. In
WCAE 2006: Workshop on Computer Architecture Educa-
tion, 2006.

D. Brylow. Embedded XINU project wiki, 2007.
http://mulug.mscs.mu.edu/wrt-wiki.

B. H. C. Cheng, D. T. Rover, , and M. W. Mutka. A multi-
pronged approach to bringing embedded systems into under-
graduate education. In Proceedings of ASEE 98: American
Society for Engineering Education, 1998.

D. E. Comer. Operating System Design: The XINU Ap-
proach. Prentice Hall, 1984.

D. E. Comer. Essentials of Computer Architecture. Prentice
Hall, Upper Saddle River, New Jersey, 2005.

D. E. Comer and T. V. Fossum. Operating System Design:
The XINU Approach. Prentice Hall, PC edition, 1988.

D. E. Comer and J. C. Lin. A laboratory environment for
experimenting with XINU. Technical Report CSD-TR 96-
047, Purdue University, 1996.

D. E. Comer and S. Munson. Operating System Design: The
XINU Approach. Prentice Hall, Mac edition, 1989.

M. Erlinger, M. Molle, T. Winters, C. Lundberg, and
R. Shea. Tinkernet: A low-cost networking laboratory. In
ACE 2004: Sixth Australasian Computing Education Con-
ference, Australian Computer Society, 2004.

Joint ACM/AIS/IEEE-CS Task Force Computing Curricula.
Computing curricula 2005: overview report, March 2006.
D. Franklin and J. Seng. Experiences with the blackfin ar-
chitecture for embedded systems education. In WCAE 2005:
Workshop on Computer Architecture Education, 2005.

M. Lichtenberg. Common Firmware Environment (CFE)
Functional Specification. Broadcom Corporation, Irvine,
CA, 1.6 edition, 2004.

Linksys. WRT54G wireless-G broadband router, 2007.
http://www.linksys.com.

Joint IEEE Computer Society/ACM Task Force on Model
Curricula for Computing. Approved final draft of the com-
puter science volume, Dec 2001.

OpenWRT linux documentation, 2007.
http://wiki.openwrt.org/.

K. G. Ricks, W. A. Stapleton, and D. J. Jackson. An embed-
ded systems course and course sequence. In WCAE 2005:
Workshop on Computer Architecture Education, 2005.
MIPS Technologies. MIPS32 4K Processor Core Family
Software User’s Manual. Mountain View, CA, 2002.

C. A. Telfer. Abstractions and Efficient Implementation of
Automatically Reconfigurable Network Testbeds.

PhD thesis, Purdue University, 2003.

T. Winters, R. Ausanka-Crues, M. Kegel, E. Shimshock,
D. Turner, and M. Erlinger. Tinkernet: A low-cost and
ready-to-deploy networking laboratory platform. In ACE
2006: Eighth Australasian Computing Education Confer-
ence, Australian Computer Society, 2006.

