Experimental

[

MARQUEITE Operating System

UNIVERSITY

Be The Difference. Lab on a Dime

Dennis Brylow

Department of Mathematics,
Statistics and Computer Science

In theory, simulating an Operating System is the same as the
real thing. In practice, it is not.

Setting up specialized Operating System Laboratory hardware
usually requires more time, money, and space than most
schools can attord.

Marquette's Systems Lab has concentrated specifically on
developing a scalable, duplicable design for an Experimental
Operating System Laboratory environment with minimal cost
and very low space requirements.

Our Experimental Operating Systems Laboratory serves as a
target plattorm in undergraduate courses on Hardware
Systems (COSC 065), Operating Systems (COSC 125 and
COEN 183), Embedded Operating Systems (COSC 195) and
Compiler Construction (COSC 170).

Coming Soon: Additional modules for coursework in
Embedded and Realtime Systems, Networking protocol stacks,

Wireless Networking, and Internetworking.

http://www.mscs.mu.edu/~brylow/xinu/

XINU in the 21°* Century

Purdue University's XINU Operating System has been successtully deployed in classrooms,
research labs, and commercial products for more than 20 years. Marquette University presents

a new reimplementation of XINU, targeted to modern RISC architectures, written in ANSI-compliant

C, and particularly well-suited to embedded platforms with scarce resources.

Serial Annex _
(optional)

General Purpose

Laboratory Workstations

Serial Consoles

...................
L e e e
e

Production Network

XINU Backends

Backend targets upload student kernel
over private network on boot, run O/S
directly.

real

No simulations or emulation;

hardware.

MIPS targets: We use Linksys WRT54GL
wireless routers (~$60) with serial port
modifications (~$10) running an
embedded MIPS32 200MHz processor, 4
MB flash, 16 MB RAM, two UARTS,
wired and wireless network interfaces.

PowerPC targets: We use Apple G3
desktops (recycled) with 512 MB RAM,
linear framebuffer, PCI bus, NIC, HD.

Apple G4 MiniMac also supported.

CISC targets: Classic XINU runs on
Intel x86, Sun 3/Motorola 68K, Sparc,
and VAX, among others.

XINU Server

General purpose server with multiple
network interfaces manages a private
network for the XINU backends, using
standard network protocols like DHCP
and TFTP.

Backend serial consoles can connect
directly to server's serial ports, or, in
larger installations, to a serial annex or
concentrator that allows many more
serial ports.

Daemon allows wusers on frontend
workstations to
backend serial consoles, or upload fresh

Optional rebooting hardware

remotely access
kernels.
allows clients to remotely reset crashed
backends.

Server tools freely available for modern
UNIX platforms, including Fedora Linux
and Solaris.

Special Purpose
XINU Backends

Private Network

Marquette's Systems Lab

runs XINU on inexpensive
wireless routers containing
the Embedded MIPS32

Processor.

XINU Frontends

General purpose computer laboratory
workstations can compile the XINU
using the standard GNU C
GCC

cross-compilers are readily available

kernel,
compiler and UNIX toolchain.

when the frontend architecture does not
match backend architecture.

Backend consoles can be connected
directly to frontend serial ports, or
frontends can communicate with server
daemon that manages collections of
backend serial consoles.

With fully remote console access, kernel
upload and powercycling, any machine
on the network is a potential frontend,
and need not be physically near the
XINU server and laboratory hardware.
Students can work on their operating
system projects from their dorm room
computers.

Typical COSC 125 Operating Systems Sequence:

Weeks 1-3 Introduction to C language and development
environment. (We use GNU toolchain on Linux.)

Week 4 Output device driver (UART or linear framebutfer.)
Week b5 Process Control (Process Control Blocks,

Context Switch in appropriate assembly language.)
Week 7 Priority Scheduling, Process Termination.
Week 8 Preemption (Interrupts) and Synchronization

(Counting Semaphores with Wait Queues.)
Week 9 Sleep/Wakeup (Delta Queues.)
Week 10 Memory Management (Dynamic Memory Allocation,
Deallocation, Free Lists, Free Space Compaction.)
Week 12 Asynchronous Device Driver (UART or Network.)
Week 14 Advanced Topic
Basic Command-Line Shell, or
Window System Pseudo-Device Management, or
Simple Network File System.

Advanced Assignments for later courses:

Network Packet Analyzer, Network Router, Virtual Memory with Network Backing Store, Networks of
Sensors, Realtime Scheduling, IP Telephony.

Available now:

MIPS XINU with preemptive multitasking, priority scheduling, synchronization primitives, dynamic
memory management, serial port and system clock drivers; Daemon and client for remote serial
console connection, kernel upload, and powercycling; schematics and/or parts lists for WRT54GL
serial port modifications, optional serial port annex, and powercycling hardware.

Ongoing Work:
Wired and Wireless network interface drivers for the WRT54GL; Integrated TCP/IP stack; Remote

single-step debugging facilities from front-end console; PowerPC G3 serial console driver and
automatic powercycling. Textbook on Embedded Systems Programming in progress.

Future Work:

Support for compilation and console connection from non-UNIX frontend machines; Support for
exotic hardware peripherals, such as sensors, EJTAG hardware, or IP telephony.

This work partially supported by the Wehr Foundation and by Cisco Systems.

