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Logic and Math in Computers

* How do we get from
silicon crystals to
computers?

* Silicon crystals = switches
called “transistors”

* Transistors = Boolean
logic blocks

* Modern computers are ‘ ﬁ ”HH
made up of millions of | ‘ ' IH
Boolean logic blocks. T
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Combining Logic Blocks
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Combinational Logic
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Combinational Logic
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The Logic Gate Game
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De Morgan's Law

e OR(A,B) == NOT(AND(NOT(A), NOT(B)))



De Morgan's Law

* OR(A,B) == NOT(AND(NOT(A), NOT(B)))
» NOT(OR(A, B)) == AND(NOT(A), NOT(B))
» NOT(OR(NOT(A), B)) == AND(A, NOT(B))
» NOT(OR(NOT(A), NOT(B))) == AND(A, B)

* These identities have many applications and
parallels in logic, mathematics, and computer

science.
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One More Logic Block Puzzle...
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Logic Blocks — Collect Them All

* There are 16 (2/4) distinct Boolean logic functions
(Logic Blocks) over two input variables.

i
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Logical Completeness

* Any Boolean logic function can be built entirely
out of AND and NOT blocks,

e or out of OR and NOT blocks,

e or out of NAND blocks,

e or out of NOR blocks, etc., etc.

* SO, what does the Logic Block Game have to do
with computer science?
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Simple Addition of Binary Digits
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Simple Addition of Binary Digits

O+ 0 = 00
0O +1 =01
1+ 0 =01
1 +1 =10



Simple Addition of Binary Digits
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C = AND(A, B)
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D = XOR(A, B)
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Two-Bit Logic Block Computer

A C
A B| C D UMD
______ 4o oo -
0 0] 0 O
0 1] 0 1 D
1 0] 0 1 B )E
1 1] 1 0
C = AND(A,B)

D = XOR(A,B)



Two-Bit Logic Block Computer

A C
A B| C S AND
______ 4o m - - -
0 0 O
0 1] 0 1 S
el
1 1 1 O
C = AND(A,B)
S = XOR(A,B)
S iIs for “Sum”

C is for “Carry”



Bigger Blocks — The Half Adder

C = AND(A,B)
S = XOR(A,B)

S iIs for “Sum”
C Is for “Carry”
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More Than Two Bits
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All That JustTo Do A+1?

* Any N-bit number can be incremented with N
half-adder logic blocks.

* We can build a similar combination of logic blocks
to decrement any N-bit number.

* We can build an N-bit zero detector with AND
and NOT blocks.

e Where does that leave us?



Addition

Int add(int x, int y)
{ 1f (1sZero(x))
{ answer =vy; }
el se

{ answer = add(dec(x),

Inc(y)): }



Multiplication

Int nmult(int X, Int vy)
{ 1f (1sZero(y)) { answer = 0; }
el se

{ answer = add(x,
mult (x, dec(y))); };



Multiplication

int mult(int x, int vy)
{ if (iszZero(y)) { answer = 0; }
el se
{ answer = add(x,
mult (x, dec(y))); };
* Yikes!

* Is this really what my computer / calculator is doing?



Addition - the Less Scenic Route
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The “Full Adder” carries in and out
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The Ripple Adder
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The Ripple Adder

X Y X Y X Y X Y
3 3 2 2 1 1 0 0
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Multiplication (Less Scenic Route)

* Before we dive into logic block multiplication,
let's review “normal”, base-10 multiplication.

AA .AAA X BB ..BBB
N N-1 2" 170 m o m-1T 210

* Think algorithmically

* How do we learn long multiplication as grade
school children?

* How is base-10 long multiplication the same as
base-2 long multiplication?

* How is it different?









B x A Xx 10 + B x A
0 1 0] 0



B x AXx 100 + B x A Xx 10 + B x A
0 2 0 1 0] 0



B x AXx 100 + B x A x 10 + B x A
0 2 0 1 0] 0



A A A WA WA
N N1 2 1 O
X BB ...BBB
m ml 2 1 O

Box Azx 100 + Box Alx 10 + Box AO
+ ... le Alx 100 + le on 10



AN AN A WA WA
N N1 2 1 O
X BB ...BBB
m ml 2 1

Box Azx 100 + Box Alx 10 + Box AO
+ ... le Alx 100+le on 10
+ ... Bzx Alx 1OOO+BZX on 100



for 1 = 0..M
for | = 0..N
term= A x B X 10’
partProd = partProd + term
product = product + partProd x 10



Peasant's Multiplication

3/ X 5
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Peasant's Multiplication
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9 20
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Peasant's Multiplication

S/ 5
18 10
9 20 Why
4 40 does this
2 80 work?
1 + 160




Peasant's Multiplication
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Peasant's Multiplication
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Peasant's Multiplication
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Binary Multiplication

37 100101
X 3 x 000101




Binary Multiplication
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Binary Multiplication
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Binary Multiplication
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Binary Multiplication

37 100101
X 5 x 000101
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Binary Multiplication

37 100101
X 3 x 000101

100101
000000
100101
000000
000000
+ 000000

00010111001



Binary Multiplication

37 100101
X 5 x 000101
185 100101
000000
100101
000000
000000
+ 000000
00010111001

185
10
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Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY
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0 O 0
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Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY

_____ 4+- - - -

0 0 0 AND
O 1 0

1 O 0

1 1 1




Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY

_____ 4- - - -

0 0 0 JANID)

0O 1 0

1 0 0 Multiplying two bits never
1 1 1 carries into next column!



Bit Multiplier

B
Ao AND PO
A group of 'N'
A1 AND P AND Blocks
1
produces the
A AN p partial produ.ct
2 from a one-bit
L multiplier.
AN AND P




Logic Block Multiplication

* With a Bit Multiplier Logic Block and a Full
Adder Logic Block for each bit of multiplier, we
can construct a Logic Block for performing long
multiplication of binary numbers.



Logic Block Multiplication

* With a Bit Multiplier Logic Block and a Full
Adder Logic Block for each bit of multiplier, we
can construct a Logic Block for performing long
multiplication of binary numbers.

* The Logic Block Game has very simple rules.

* Only a small number of basic blocks types
required.

* Surprisingly complex logic can be constructed
from very little.



