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Logic and Math in Computers

 How do we get from 
silicon crystals to 
computers?

 Silicon crystals → switches 
called “transistors”

 Transistors → Boolean 
logic blocks

 Modern computers are 
made up of millions of 
Boolean logic blocks.



A B
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De Morgan's Law

 OR(A,B)  ==  NOT(AND(NOT(A), NOT(B)))

 NOT(OR(A, B)) == AND(NOT(A), NOT(B))

 NOT(OR(NOT(A), B)) == AND(A, NOT(B))

 NOT(OR(NOT(A), NOT(B))) == AND(A, B)

 These identities have many applications and 

parallels in logic, mathematics, and computer 

science.



One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B

off off
off on
on off
on on



One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C
NOT(A)

off off on
off on on
on off off
on on off

C



One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C D
NOT(A) NOT(B)

off off on on
off on on off
on off off on
on on off off

C

D



One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C D E
NOT(A) NOT(B) AND(A,D)

off off on on off
off on on off off
on off off on on
on on off off off

C

D E



One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C D E F
NOT(A) NOT(B) AND(A,D) AND(B,C)

off off on on off off
off on on off off on
on off off on on off
on on off off off off

C

D E

F



One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C D E F G
NOT(A) NOT(B) AND(A,D) AND(B,C) OR(E,F)

off off on on off off off
off on on off off on on
on off off on on off on
on on off off off off off

C

D E

F

G



One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B G

off off off
off on on
on off on
on on off

C

D E

F

G

  XOR



Logic Blocks – Collect Them All

 There are 16 (2^4) distinct Boolean logic functions 
(Logic Blocks) over two input variables.

  XOR

  NOR   XNOR NAND

ORAND

NOT
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Logical Completeness

 Any Boolean logic function can be built entirely 
out of AND and NOT blocks,

 or out of OR and NOT blocks,
 or out of NAND blocks,
 or out of NOR blocks, etc., etc.

 SO, what does the Logic Block Game have to do 
with computer science?
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Simple Addition of Binary Digits

0 + 0 = 00
0 + 1 = 01
1 + 0 = 01
1 + 1 = 10



Simple Addition of Binary Digits

A   B C  D
0   0 0  0
0   1 0  1
1   0 0  1
1   1 1  0



C = AND(A, B)

A   B C  D
0   0 0  0
0   1 0  1
1   0 0  1
1   1 1  0



D = XOR(A, B)

A   B C  D
0   0 0  0
0   1 0  1
1   0 0  1
1   1 1  0



Two-Bit Logic Block Computer

  XOR

ANDA   B | C  D
------+-----
0   0 | 0  0
0   1 | 0  1
1   0 | 0  1
1   1 | 1  0

C = AND(A,B)
D = XOR(A,B)
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Two-Bit Logic Block Computer

  XOR

ANDA   B | C  S
------+-----
0   0 | 0  0
0   1 | 0  1
1   0 | 0  1
1   1 | 1  0

C = AND(A,B)
S = XOR(A,B)

S is for “Sum”
C is for “Carry”

A

B

C

S



Bigger Blocks – The Half Adder

  XOR

ANDA   B | C  S
------+-----
0   0 | 0  0
0   1 | 0  1
1   0 | 0  1
1   1 | 1  0

C = AND(A,B)
S = XOR(A,B)

S is for “Sum”
C is for “Carry”

A

B

C

S

A     C

B      S
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All That Just To Do A+1?

 Any N-bit number can be incremented with N 
half-adder logic blocks.

 We can build a similar combination of logic blocks 
to decrement any N-bit number.

 We can build an N-bit zero detector with AND 
and NOT blocks.

 Where does that leave us?



Addition

int add(int x, int y)

{  if (isZero(x))

    {  answer = y;  }

    else 

    {  answer = add(dec(x), 

                    inc(y));  }

 }



Multiplication

int mult(int x, int y)

{  if (isZero(y)) {  answer = 0;  }

   else

     {  answer = add(x,

             mult(x, dec(y))); }}



Multiplication

int mult(int x, int y)

{  if (isZero(y)) {  answer = 0;  }

   else

     {  answer = add(x,

             mult(x, dec(y))); }}

 Yikes!
 Is this really what my computer / calculator is doing?



Addition – the Less Scenic Route
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The “Full Adder” carries in and out
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Multiplication (Less Scenic Route)

 Before we dive into logic block multiplication, 
let's review “normal”, base-10 multiplication.

A
N
A

N-1
... A

2
A

1
A

0
  x   B

m
B

m-1
... B

2
B

1
B

0

 Think algorithmically
 How do we learn long multiplication as grade 

school children?
 How is base-10 long multiplication the same as 

base-2 long multiplication?
 How is it different?
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for i = 0..M
   for j = 0..N
      term = A

j
 x B

i
 x 10j

      partProd = partProd + term
   product = product + partProd x 10i
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Peasant's Multiplication

       37       5
       18      10
        9      20
        4      40
        2      80
        1   + 160
              185

Why 
does this 
work?



Peasant's Multiplication

       37       5    5 x 20

       18      10  + 5 x 21

        9      20  + 5 x 22

        4      40  + 5 x 23

        2      80  + 5 x 24

        1   + 160  + 5 x 25

              185



Peasant's Multiplication

       37       5    5 x 20 x 1
       18      10  + 5 x 21 x 0
        9      20  + 5 x 22 x 1
        4      40  + 5 x 23 x 0
        2      80  + 5 x 24 x 0
        1   + 160  + 5 x 25 x 1
              185



Peasant's Multiplication

       37       5    5 x 20 x 1
       18      10  + 5 x 21 x 0
        9      20  + 5 x 22 x 1
        4      40  + 5 x 23 x 0
        2      80  + 5 x 24 x 0
        1   + 160  + 5 x 25 x 1
              185

      “37
10
” == “100101

2
”



Binary Multiplication

  37            100101
x  5          x 000101
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Binary Multiplication

  37            100101
x  5          x 000101
                100101
               000000
              100101
             000000
            000000
           000000



Binary Multiplication

  37            100101
x  5          x 000101
                100101
               000000
              100101
             000000
            000000
         + 000000     
           00010111001



Binary Multiplication

  37            100101
x  5          x 000101
 185            100101
               000000
              100101
             000000
            000000
         + 000000     
           00010111001 = 185

10
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How do we multiply two bits with Logic Blocks?

X  Y | X*Y
-----+----
0  0 |  0
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Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X  Y | X*Y
-----+----
0  0 |  0
0  1 |  0
1  0 |  0
1  1 |  1

AND



Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X  Y | X*Y
-----+----
0  0 |  0
0  1 |  0
1  0 |  0     Multiplying two bits never
1  1 |  1      carries into next column!

AND



Bit Multiplier

AND

AND

AND

AND

B

P
1

P
2

P
N

P
0

A
1

A
2

A
N

A
0

A group of 'N' 
AND Blocks 
produces the 
partial product 
from a one-bit 
multiplier.



Logic Block Multiplication

 With a Bit Multiplier Logic Block and a Full 
Adder Logic Block for each bit of multiplier, we 
can construct a Logic Block for performing long 
multiplication of binary numbers.



Logic Block Multiplication

 With a Bit Multiplier Logic Block and a Full 
Adder Logic Block for each bit of multiplier, we 
can construct a Logic Block for performing long 
multiplication of binary numbers.

 The Logic Block Game has very simple rules.
 Only a small number of basic blocks types 

required.
 Surprisingly complex logic can be constructed 

from very little.


