COSC 065 Hardware Systems

Marquette University

Building Blocks

• How do we get from silicon crystals to computers?

- How do we get from silicon crystals to computers?
- Silicon crystals → switches called "transistors"

- How do we get from silicon crystals to computers?
- Silicon crystals → switches called "transistors"
- Transistors → Boolean logic blocks

- How do we get from silicon crystals to computers?
- Silicon crystals → switches called "transistors"
- Transistors → Boolean logic blocks
- Modern computers are made up of millions of Boolean logic blocks.

The Logic of Simple Switches

Α	В	Light
off	off	off

A	В	Light
off	off	off
off	on	on

A	В	Light
off	off	off
off	on	on
on	off	on

A	В	Light
off	off	off
off	on	on
on	off	on
on	on	on

Light is on if A is on OR B is on

A	В	Light
off	off	off
ON ON	off	ON
011	011	

A	В	Light
off	off	off

A	В	Light
off	off	off
off	on	off

A	В	Light
off	off	off
off	on	off
on	off	off

A	В	Light
off	off	off
off	on	off
on	off	off
on	on	On
on	off	off
on	on	on

Light on if A is on AND B is on

off off off off on off	A	В	Light
on off off on on on	off off on on	off on off on	off off off on

The Inverter Block

Α	Light	
off on	on off	NOT

Combining Logic Blocks

The Logic Gate Game

De Morgan's Law

• OR(A,B) == NOT(AND(NOT(A), NOT(B)))

De Morgan's Law

- OR(A,B) == NOT(AND(NOT(A), NOT(B)))
- NOT(OR(A, B)) == AND(NOT(A), NOT(B))
- NOT(OR(NOT(A), B)) == AND(A, NOT(B))
- NOT(OR(NOT(A), NOT(B))) == AND(A, B)
- These identities have many applications and parallels in logic, mathematics, and computer science.

Logic Blocks – Collect Them All

 There are 16 (2^4) distinct Boolean logic functions (Logic Blocks) over two input variables.

Logical Completeness

• Any Boolean logic function can be built entirely out of AND and NOT blocks,

Logical Completeness

- Any Boolean logic function can be built entirely out of AND and NOT blocks,
- or out of OR and NOT blocks,
- or out of NAND blocks,
- or out of NOR blocks, etc., etc.

Logical Completeness

- Any Boolean logic function can be built entirely out of AND and NOT blocks,
- or out of OR and NOT blocks,
- or out of NAND blocks,
- or out of NOR blocks, etc., etc.
- SO, what does the Logic Block Game have to do with computer science?

0 + 0 = 0

0 + 0 = 00 + 1 = 1

0 + 0 = 00 + 1 = 11 + 0 = 1

C = AND(A, B)

D = XOR(A, B)

B C D A 1 1 1 1 1 1 1

Two-Bit Logic Block Computer

C = AND(A,B)D = XOR(A,B)

Two-Bit Logic Block Computer

C = AND(A,B)S = XOR(A,B)

S is for "Sum" C is for "Carry"

Bigger Blocks – The Half Adder

A_{2}	A_1	A ₀	C _{out}	S ₃	S_{2}	S_{1}	S ₀
1	0	0	0	0	1	0	1
1	0	1	0	0	1	1	0
1	1	0	0	0	1	1	1
1	1	1	0	1	0	0	0
0	0	0	0	1	0	0	1
• • •				•			
1	1	0	0	1	1	1	1
1	1	1	1	0	0	0	0
	A2 1 1 1 1 0 1 1	A 1 1 1 0 1 1 1 1 1 1 1 0 0 0 . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

All That Just To Do A+1?

- Any N-bit number can be *incremented* with N half-adder logic blocks.
- We can build a similar combination of logic blocks to *decrement* any N-bit number.
- We can build an N-bit *zero detector* with AND and NOT blocks.
- Where does that leave us?

int add(int x, int y) { if (isZero(x)) $\{ answer = y; \}$ else $\{ answer = add(dec(x)), \}$ inc(y); }

Multiplication

Multiplication

- int mult(int x, int y)
 { if (isZero(y)) { answer = 0; }
 else
 { answer = add(x,
 mult(x, dec(y))); }}
- Yikes!
- Is this *really* what my computer / calculator is doing?

Addition – the Less Scenic Route

X	Y	C_{in}	Cou	t S	
0	0	0	0	0	$\frac{Y}{B} \frac{A}{S} \frac{C}{S} \frac{OR}{S}$
0	0	1	0	1	
0	1	0	0	1	C. A C S
0	1	1	1	0	B S
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1_	1_	1	1	1	

The "Full Adder" carries in and out

The Ripple Adder

The Ripple Adder

Multiplication (Less Scenic Route)

• Before we dive into logic block multiplication, let's review "normal", base-10 multiplication.

 $A_{N}A_{N-1}...A_{2}A_{1}A_{0} \times B_{m}B_{m-1}...B_{2}B_{1}B_{0}$

- Think algorithmically
- How do we learn long multiplication as grade school children?
- How is base-10 long multiplication the same as base-2 long multiplication?
- How is it different?

 $A_{N}A_{N-1} \cdots A_{2}A_{1}A_{0}$ $X B_{m}B_{m-1} \cdots B_{2}B_{1}B_{0}$ $B_{0} \times A_{1} \times 10 + B_{0} \times A_{0}$

 $\begin{array}{c} A_{N}A_{N-1} \cdots A_{2}A_{1}A_{0} \\ X & B_{m}B_{m-1} \cdots B_{2}B_{1}B_{0} \\ B_{0} & x & A_{2} & x & 100 + B_{0} & x & A_{1} & x & 10 + B_{0} & x & A_{0} \end{array}$

 $A_{N}A_{N-1} \cdots A_{2}A_{1}A_{0}$ $X B_{m}B_{m-1} \cdots B_{2}B_{1}B_{0}$... B_{0} x A_{2} x 100 + B_{0} x A_{1} x 10 + B_{0} x A_{0}

 $A_{N}A_{N-1} \cdots A_{2}A_{1}A_{0}$ $X B_{m}B_{m-1} \cdots B_{2}B_{1}B_{0}$ $\cdots B_{0} \times A_{2} \times 100 + B_{0} \times A_{1} \times 10 + B_{0} \times A_{0}$ $+ \cdots B_{1} \times A_{1} \times 100 + B_{1} \times A_{0} \times 10$

 $A_{N}A_{N-1} \cdot \cdot \cdot A_{2}A_{1}A_{0}$ $X B_{m}B_{m-1} \cdot \cdot \cdot B_{2}B_{1}B_{0}$

... $B_0 \ge A_2 \ge 100 + B_0 \ge A_1 \ge 10 + B_0 \ge A_0$ + ... $B_1 \ge A_1 \ge 100 + B_1 \ge A_0 \ge 10$ + ... $B_2 \ge A_1 \ge 1000 + B_2 \ge A_0 \ge 100$

$$\begin{array}{c} A_{N}A_{N-1} \cdot \cdot \cdot A_{2}A_{1}A_{0} \\ \mathbf{X} \quad B_{m}B_{m-1} \cdot \cdot \cdot B_{2}B_{1}B_{0} \end{array}$$

for i = 0..M for j = 0..N term = $A_j \times B_i \times 10^j$ partProd = partProd + term product = product + partProd x 10^i

37	5
18	10
9	20
4	40
2	80
1	160

Why does this work?

100101 <u>x 000101</u>

 $100101 \\
 \times 000101 \\
 100101$

 $\begin{array}{r}
100101 \\
\times & 000101 \\
100101 \\
000000
\end{array}$

37 x 5 $\begin{array}{r}
100101 \\
\times & 000101 \\
100101 \\
000000 \\
100101
\end{array}$

37 x 5 $\begin{array}{r}
100101 \\
\times 000101 \\
100101 \\
000000 \\
100101 \\
000000 \\
000000 \\
000000
\end{array}$

x 5

<u>x 5</u>

x 000101 + 000000 $00010111001 = 185_{10}$

How do we multiply two bits with Logic Blocks?

X Y | X*Y

How do we multiply two bits with Logic Blocks?

X Y X*Y -----0 0 0 0

How do we multiply two bits with Logic Blocks?

Multiplying two bits never carries into next column!
Bit Multiplier

A group of 'N' AND Blocks produces the partial product from a one-bit multiplier.

Logic Block Multiplication

• With a Bit Multiplier Logic Block and a Full Adder Logic Block for each bit of multiplier, we can construct a Logic Block for performing long multiplication of binary numbers.

Logic Block Multiplication

- With a Bit Multiplier Logic Block and a Full Adder Logic Block for each bit of multiplier, we can construct a Logic Block for performing long multiplication of binary numbers.
- The Logic Block Game has very simple rules.
- Only a small number of basic blocks types required.
- Surprisingly complex logic can be constructed from very little.