
COSC 065
Hardware Systems

Marquette University

Building Blocks

Logic and Math in Computers

 How do we get from
silicon crystals to
computers?

Logic and Math in Computers

 How do we get from
silicon crystals to
computers?

 Silicon crystals → switches
called “transistors”

Logic and Math in Computers

 How do we get from
silicon crystals to
computers?

 Silicon crystals → switches
called “transistors”

 Transistors → Boolean
logic blocks

Logic and Math in Computers

 How do we get from
silicon crystals to
computers?

 Silicon crystals → switches
called “transistors”

 Transistors → Boolean
logic blocks

 Modern computers are
made up of millions of
Boolean logic blocks.

A B

The Logic of Simple Switches

A B

A B Light

off off off

A B

A B Light

off off off
off on on

A B

A B Light

off off off
off on on
on off on

A B

A B Light

off off off
off on on
on off on
on on on

A B

A B Light

off off off
off on on
on off on
on on on

OR

Light is on if A is on OR B is on

A B

Another Logic Block

A B

A B Light

off off off

Another Logic Block

A B

A B Light

off off off
off on off

Another Logic Block

A B

A B Light

off off off
off on off
on off off

Another Logic Block

A B

A B Light

off off off
off on off
on off off
on on on

Another Logic Block

A B

A B Light

off off off
off on off
on off off
on on on

AND

Light on if A is on AND B is on

A Light

off on
on off

A

NOT

The Inverter Block

NOT

NOT

NOTAND
B

A

A B

off off
off on
on off
on on

Combining Logic Blocks

NOT

NOT

NOTAND
B

A
C

D

E F

A B C D E F output

off off
off on
on off
on on

Combinational Logic

NOT

NOT

NOTAND
B

A
C

D

E F

A B C D E F output
NOT(A)

off off on
off on on
on off off
on on off

Combinational Logic

NOT

NOT

NOTAND
B

A
C

D

E F

A B C D E F output
NOT(A) NOT(B)

off off on on
off on on off
on off off on
on on off off

Combinational Logic

NOT

NOT

NOTAND
B

A
C

D

E F

A B C D E F output
NOT(A) NOT(B) AND(C,D)

off off on on on
off on on off off
on off off on off
on on off off off

Combinational Logic

NOT

NOT

NOTAND
B

A
C

D

E F

A B C D E F output
NOT(A) NOT(B) AND(C,D) NOT(E)

off off on on on off
off on on off off on
on off off on off on
on on off off off on

Combinational Logic

NOT

NOT

NOTAND
B

A
F

A B F output

off off off
off on on
on off on
on on on

OR

The Logic Gate Game

De Morgan's Law

 OR(A,B) == NOT(AND(NOT(A), NOT(B)))

De Morgan's Law

 OR(A,B) == NOT(AND(NOT(A), NOT(B)))

 NOT(OR(A, B)) == AND(NOT(A), NOT(B))

 NOT(OR(NOT(A), B)) == AND(A, NOT(B))

 NOT(OR(NOT(A), NOT(B))) == AND(A, B)

 These identities have many applications and

parallels in logic, mathematics, and computer

science.

One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B

off off
off on
on off
on on

One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C
NOT(A)

off off on
off on on
on off off
on on off

C

One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C D
NOT(A) NOT(B)

off off on on
off on on off
on off off on
on on off off

C

D

One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C D E
NOT(A) NOT(B) AND(A,D)

off off on on off
off on on off off
on off off on on
on on off off off

C

D E

One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C D E F
NOT(A) NOT(B) AND(A,D) AND(B,C)

off off on on off off
off on on off off on
on off off on on off
on on off off off off

C

D E

F

One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B C D E F G
NOT(A) NOT(B) AND(A,D) AND(B,C) OR(E,F)

off off on on off off off
off on on off off on on
on off off on on off on
on on off off off off off

C

D E

F

G

One More Logic Block Puzzle...

AND

AND

OR

NOT

NOT

A

B

A B G

off off off
off on on
on off on
on on off

C

D E

F

G

 XOR

Logic Blocks – Collect Them All

 There are 16 (2^4) distinct Boolean logic functions
(Logic Blocks) over two input variables.

 XOR

 NOR XNOR NAND

ORAND

NOT

Logical Completeness

 Any Boolean logic function can be built entirely
out of AND and NOT blocks,

Logical Completeness

 Any Boolean logic function can be built entirely
out of AND and NOT blocks,

 or out of OR and NOT blocks,
 or out of NAND blocks,
 or out of NOR blocks, etc., etc.

Logical Completeness

 Any Boolean logic function can be built entirely
out of AND and NOT blocks,

 or out of OR and NOT blocks,
 or out of NAND blocks,
 or out of NOR blocks, etc., etc.

 SO, what does the Logic Block Game have to do
with computer science?

Simple Addition of Binary Digits

0 + 0 = 0

Simple Addition of Binary Digits

0 + 0 = 0
0 + 1 = 1

Simple Addition of Binary Digits

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1

Simple Addition of Binary Digits

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Simple Addition of Binary Digits

0 + 0 = 00
0 + 1 = 01
1 + 0 = 01
1 + 1 = 10

Simple Addition of Binary Digits

A B C D
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

C = AND(A, B)

A B C D
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

D = XOR(A, B)

A B C D
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Two-Bit Logic Block Computer

 XOR

ANDA B | C D
------+-----
0 0 | 0 0
0 1 | 0 1
1 0 | 0 1
1 1 | 1 0

C = AND(A,B)
D = XOR(A,B)

A

B

C

D

Two-Bit Logic Block Computer

 XOR

ANDA B | C S
------+-----
0 0 | 0 0
0 1 | 0 1
1 0 | 0 1
1 1 | 1 0

C = AND(A,B)
S = XOR(A,B)

S is for “Sum”
C is for “Carry”

A

B

C

S

Bigger Blocks – The Half Adder

 XOR

ANDA B | C S
------+-----
0 0 | 0 0
0 1 | 0 1
1 0 | 0 1
1 1 | 1 0

C = AND(A,B)
S = XOR(A,B)

S is for “Sum”
C is for “Carry”

A

B

C

S

A C

B S

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 0

0

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 0 1

0
0

1

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 0 1

0 0
10

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 0 0 1

0

0
10 0

0

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 0 0 1

0

0

10 0
00

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 0 0 0 1

0 0

10 0
00

0
0

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 0 0 0 1

0

0

10 0
00

0
0

0

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

1

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 0 0 0 0 0 1

0 0

10 0
00

0
0

0

0
0

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 0 1 0 0 0 1 0

1

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 1 0 0 0 0 1 1

1

More Than Two Bits

 A
C B
 S

 A
C B
 S

 A
C B
 S

 A
C B
 S

S
2

S
1

S
0

S
3

A
2

A
1

A
0

A
3

C
out

A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 0 1 1 0 0 1 0 0

1

More Than Two Bits
A
3
 A

2
 A

1
 A

0
 C

out
S
3
 S

2
 S

1
 S

0

0 1 0 0 0 0 1 0 1
0 1 0 1 0 0 1 1 0
0 1 1 0 0 0 1 1 1
0 1 1 1 0 1 0 0 0
1 0 0 0 0 1 0 0 1
... ...
1 1 1 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0

All That Just To Do A+1?

 Any N-bit number can be incremented with N
half-adder logic blocks.

 We can build a similar combination of logic blocks
to decrement any N-bit number.

 We can build an N-bit zero detector with AND
and NOT blocks.

 Where does that leave us?

Addition

int add(int x, int y)

{ if (isZero(x))

 { answer = y; }

 else

 { answer = add(dec(x),

 inc(y)); }

 }

Multiplication

int mult(int x, int y)

{ if (isZero(y)) { answer = 0; }

 else

 { answer = add(x,

 mult(x, dec(y))); }}

Multiplication

int mult(int x, int y)

{ if (isZero(y)) { answer = 0; }

 else

 { answer = add(x,

 mult(x, dec(y))); }}

 Yikes!
 Is this really what my computer / calculator is doing?

Addition – the Less Scenic Route
X Y C

in
 C

out
S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A C

B S

A C

B S
OR

S

C
out

C
in

X

Y

The “Full Adder” carries in and out
X Y C

in
 C

out
S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A C

B S

A C

B S
OR

S

C
out

C
in

X

Y

 X Y

C
out

 C
in

 S

The Ripple Adder

 X Y

C
out

 C
in

 S

 X Y

C
out

 C
in

 S

 X Y

C
out

 C
in

 S

 X Y

C
out

 C
in

 S

S
2

S
1

S
0

S
3

Y
2

Y
1

Y
0

Y
3

X
2

X
1

X
0

X
3

The Ripple Adder

 X Y

C
out

 C
in

 S

 X Y

C
out

 C
in

 S

 X Y

C
out

 C
in

 S

 X Y

C
out

 C
in

 S

S
2

S
1

S
0

S
3

Y
2

Y
1

Y
0

Y
3

X
2

X
1

X
0

X
3

C
out

S
3
S

2
S

1
S

0
 = X

3
X

2
X

1
X

0
 + Y

3
Y

2
Y

1
Y

0
+ C

in

Multiplication (Less Scenic Route)

 Before we dive into logic block multiplication,
let's review “normal”, base-10 multiplication.

A
N
A

N-1
... A

2
A

1
A

0
 x B

m
B

m-1
... B

2
B

1
B

0

 Think algorithmically
 How do we learn long multiplication as grade

school children?
 How is base-10 long multiplication the same as

base-2 long multiplication?
 How is it different?

A
N
A
N-1
...A

2
A
1
A
0

x B
m
B
m-1
...B

2
B
1
B
0

A
N
A
N-1
...A

2
A
1
A
0

x B
m
B
m-1
...B

2
B
1
B
0

B
0
x A

0

A
N
A
N-1
...A

2
A
1
A
0

x B
m
B
m-1
...B

2
B
1
B
0

B
0
x A

1
x 10 + B

0
x A

0

A
N
A
N-1
...A

2
A
1
A
0

x B
m
B
m-1
...B

2
B
1
B
0

B
0
x A

2
x 100 + B

0
x A

1
x 10 + B

0
x A

0

A
N
A
N-1
...A

2
A
1
A
0

x B
m
B
m-1
...B

2
B
1
B
0

... B
0
x A

2
x 100 + B

0
x A

1
x 10 + B

0
x A

0

A
N
A
N-1
...A

2
A
1
A
0

x B
m
B
m-1
...B

2
B
1
B
0

... B
0
x A

2
x 100 + B

0
x A

1
x 10 + B

0
x A

0

+ ... B
1
x A

1
x 100 + B

1
x A

0
x 10

A
N
A
N-1
...A

2
A
1
A
0

x B
m
B
m-1
...B

2
B
1
B
0

... B
0
x A

2
x 100 + B

0
x A

1
x 10 + B

0
x A

0

+ ... B
1
x A

1
x 100 + B

1
x A

0
x 10

+ ... B
2
x A

1
x 1000 + B

2
x A

0
x 100

A
N
A
N-1
...A

2
A
1
A
0

x B
m
B
m-1
...B

2
B
1
B
0

for i = 0..M
 for j = 0..N
 term = A

j
 x B

i
 x 10j

 partProd = partProd + term
 product = product + partProd x 10i

Peasant's Multiplication

 37 x 5

Peasant's Multiplication

 37 5
 18 10

Peasant's Multiplication

 37 5
 18 10
 9 20

Peasant's Multiplication

 37 5
 18 10
 9 20
 4 40

Peasant's Multiplication

 37 5
 18 10
 9 20
 4 40
 2 80

Peasant's Multiplication

 37 5
 18 10
 9 20
 4 40
 2 80
 1 160

Peasant's Multiplication

 37 5
 18 10
 9 20
 4 40
 2 80
 1 160

Peasant's Multiplication

 37 5
 18 10
 9 20
 4 40
 2 80
 1 + 160

Peasant's Multiplication

 37 5
 18 10
 9 20
 4 40
 2 80
 1 + 160
 185

Peasant's Multiplication

 37 5
 18 10
 9 20
 4 40
 2 80
 1 + 160
 185

Why
does this
work?

Peasant's Multiplication

 37 5 5 x 20

 18 10 + 5 x 21

 9 20 + 5 x 22

 4 40 + 5 x 23

 2 80 + 5 x 24

 1 + 160 + 5 x 25

 185

Peasant's Multiplication

 37 5 5 x 20 x 1
 18 10 + 5 x 21 x 0
 9 20 + 5 x 22 x 1
 4 40 + 5 x 23 x 0
 2 80 + 5 x 24 x 0
 1 + 160 + 5 x 25 x 1
 185

Peasant's Multiplication

 37 5 5 x 20 x 1
 18 10 + 5 x 21 x 0
 9 20 + 5 x 22 x 1
 4 40 + 5 x 23 x 0
 2 80 + 5 x 24 x 0
 1 + 160 + 5 x 25 x 1
 185

 “37
10
” == “100101

2
”

Binary Multiplication

 37 100101
x 5 x 000101

Binary Multiplication

 37 100101
x 5 x 000101
 100101

Binary Multiplication

 37 100101
x 5 x 000101
 100101
 000000

Binary Multiplication

 37 100101
x 5 x 000101
 100101
 000000
 100101

Binary Multiplication

 37 100101
x 5 x 000101
 100101
 000000
 100101
 000000
 000000
 000000

Binary Multiplication

 37 100101
x 5 x 000101
 100101
 000000
 100101
 000000
 000000
 + 000000
 00010111001

Binary Multiplication

 37 100101
x 5 x 000101
 185 100101
 000000
 100101
 000000
 000000
 + 000000
 00010111001 = 185

10

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y | X*Y
-----+----
 |
 |
 |
 |

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y | X*Y
-----+----
0 0 | 0
 |
 |
 |

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y | X*Y
-----+----
0 0 | 0
0 1 | 0
 |
 |

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y | X*Y
-----+----
0 0 | 0
0 1 | 0
1 0 | 0
 |

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y | X*Y
-----+----
0 0 | 0
0 1 | 0
1 0 | 0
1 1 | 1

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y | X*Y
-----+----
0 0 | 0
0 1 | 0
1 0 | 0
1 1 | 1

AND

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y | X*Y
-----+----
0 0 | 0
0 1 | 0
1 0 | 0 Multiplying two bits never
1 1 | 1 carries into next column!

AND

Bit Multiplier

AND

AND

AND

AND

B

P
1

P
2

P
N

P
0

A
1

A
2

A
N

A
0

A group of 'N'
AND Blocks
produces the
partial product
from a one-bit
multiplier.

Logic Block Multiplication

 With a Bit Multiplier Logic Block and a Full
Adder Logic Block for each bit of multiplier, we
can construct a Logic Block for performing long
multiplication of binary numbers.

Logic Block Multiplication

 With a Bit Multiplier Logic Block and a Full
Adder Logic Block for each bit of multiplier, we
can construct a Logic Block for performing long
multiplication of binary numbers.

 The Logic Block Game has very simple rules.
 Only a small number of basic blocks types

required.
 Surprisingly complex logic can be constructed

from very little.

