cosc 065
 Hardware Systems

Marquette University

Building Blocks

Logic and Math in Computers

- How do we get from silicon crystals to computers?

Logic and Math in Computers

- How do we get from silicon crystals to computers?
- Silicon crystals \rightarrow switches called "transistors"

Logic and Math in Computers

- How do we get from silicon crystals to computers?
- Silicon crystals \rightarrow switches called "transistors"
- Transistors \rightarrow Boolean logic blocks

Logic and Math in Computers

- How do we get from silicon crystals to computers?
- Silicon crystals \rightarrow switches called "transistors"
- Transistors \rightarrow Boolean logic blocks
- Modern computers are made up of millions of Boolean logic blocks.

The Logic of Simple Switches

A	B	Light
off	off	off
off	on	on
on	off	on
on	on	on

Light is on if A is on OR B is on

A	B	Light
off	off	off
off	on	on
on	off	on
on	on	on

Another Logic Block

Another Logic Block

A	B	Light
off	off	off

Another Logic Block

A	B	Light
off	off	off
off	on	off

Another Logic Block

A	B	Light
off	off	off
off	on	off
on	off	off

Another Logic Block

Light on if A is on AND B is on

A	B	Light
off	off	off
off	on	off
on	off	off
on	on	on

The Inverter Block

Combining Logic Blocks

Combinational Logic

A	B	C	D	E	F output
off	off				
off	on				
on	off				
on	on				

Combinational Logic

A	B	C	D	E	F output
		NOT(A)			
off	off	on			
off	on	on			
on	off	off			
on	on	off			

Combinational Logic

A	B	C	D	E	F output
		NOT(A)	NOT(B)		
off	off	on	on		
off	on	on	off		
on	off	off	on		
on	on	off	off		

Combinational Logic

A	B	C	D	E	F output
		NOT(A)	NOT(B)	AND(C,D)	
off	off	on	on	on	
off	on	on	off	off	
on	off	off	on	off	
on	on	off	off	off	

Combinational Logic

A	B	C	D	E	F output
		NOT(A)	NOT(B)	AND(C,D)	NOT(E)
off	off	on	on	on	off
off	on	on	off	off	on
on	off	off	on	off	on
on	on	off	off	off	on

The Logic Gate Game

De Morgan's Law

- $\operatorname{OR}(\mathrm{A}, \mathrm{B})==\operatorname{NOT(AND(NOT(A),~NOT(B)))~}$

De Morgan's Law

- OR(A,B) == NOT(AND(NOT(A), NOT(B)))
- NOT(OR(A, B)) == AND(NOT(A), NOT(B))
- NOT(OR(NOT(A), B)) == AND(A, NOT(B))
- $\operatorname{NOT(OR(NOT(A),~NOT(B)))~==~AND(A,~B)~}$
- These identities have many applications and parallels in logic, mathematics, and computer science.

One More Logic Block Puzzle...

Logic Blocks - Collect Them AII

- There are 16 (2^4) distinct Boolean logic functions (Logic Blocks) over two input variables.

000

Logical Completeness

- Any Boolean logic function can be built entirely out of AND and NOT blocks,

Logical Completeness

- Any Boolean logic function can be built entirely out of AND and NOT blocks,
- or out of OR and NOT blocks,
- or out of NAND blocks,
- or out of NOR blocks, etc., etc.

Logical Completeness

- Any Boolean logic function can be built entirely out of AND and NOT blocks,
- or out of OR and NOT blocks,
- or out of NAND blocks,
- or out of NOR blocks, etc., etc.
- SO, what does the Logic Block Game have to do with computer science?

Simple Addifion of Binary Digits

$$
0+0=0
$$

Simple Addifion of Binary Digits

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1
\end{aligned}
$$

Simple Addition of Binary Digits

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1
\end{aligned}
$$

Simple Addition of Binary Digits

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10
\end{aligned}
$$

Simple Addition of Binary Digits

$$
\begin{aligned}
& 0+0=00 \\
& 0+1=01 \\
& 1+0=01 \\
& 1+1=10
\end{aligned}
$$

Simple Addition of Binary Digits

$C=A N D(A, B)$

A	B	C	D
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$D=X O R(A, B)$

A	B	C	D
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Two-Bit Logic Block Computer

Two-Bit Logic Block Computer

S is for "Sum"
C is for "Carry"

Bigger Blocks - The Half Adder

More Than Two Bits

A_{3}	A_{2}	A_{1}	A_{0}	$C_{\text {out }}$	S_{3}	S_{2}	S_{1}	S_{0}
0	0	1	0	0	0	0	1	1

More Than Two Bits

More Than Two Bits

A_{3}	A_{2}	A_{1}	A_{0}	$C_{\text {out }}$	S_{3}	S_{2}	S_{1}	S_{0}
0	1	0	0	0	0	1	0	1
0	1	0	1	0	0	1	1	0
0	1	1	0	0	0	1	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	0	1	0	0	1
\cdots	1	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	0

All That Just To Do A+1?

- Any N-bit number can be incremented with N half-adder logic blocks.
- We can build a similar combination of logic blocks to decrement any N -bit number.
- We can build an N-bit zero detector with AND and NOT blocks.
- Where does that leave us?

Addition

int add(int x, int $y)$
\{ if (isZero(x))
\{ answer $=$ y; \}
else
\{ answer = add (dec (x) ,
inc(y)); \}
\}

Multiplication

int mult(int x, int $y)$
\{ if (isZero(y)) \{ answer = 0; \} else
\{ answer $=$ add $(x$, mult(x, $\operatorname{dec}(y))) ; \quad\}\}$

Multiplication

int mult(int x, int $y)$
\{ if (isZero(y)) \{ answer = 0; \} else

$$
\{\quad \text { answer }=\operatorname{add}(x,
$$

$$
\text { mult }(x, \operatorname{dec}(y))) ; \quad\}\}
$$

- Yikes!
- Is this really what my computer / calculator is doing?

Addition - the Less Scenic Route

The "Full Adder" carries in and out

The Ripple Adder

The Ripple Adder

$$
C_{\text {out }} S_{3} S_{2} S_{1} S_{0}=X_{3} X_{2} X_{1} X_{0}+Y_{3} Y_{2} Y_{1} Y_{0}+C_{i n}
$$

Multiplication (Less Scenic Route)

- Before we dive into logic block multiplication, let's review "normal", base-10 multiplication.

$$
A_{N} A_{N-1} \ldots A_{2} A_{1} A_{0} \times B_{m} B_{m-1} \ldots B_{2} B_{1} B_{0}
$$

- Think algorithmically
- How do we learn long multiplication as grade school children?
- How is base-10 long multiplication the same as base-2 long multiplication?
- How is it different?

$$
\begin{array}{r}
A_{N} A_{N-1} \ldots A_{2} A_{1} A_{0} \\
\times B_{m} B_{m-1} \ldots B_{2} B_{1} B_{0}
\end{array}
$$

$$
\begin{array}{r}
A_{N} A_{N-1} \ldots A_{2} A_{1} A_{0} \\
\times B_{m} B_{m-1} \ldots B_{2} B_{1} B_{0} \\
\\
B_{0} \times A_{0}
\end{array}
$$

$$
\begin{array}{r}
\mathrm{A}_{\mathrm{N}} \mathrm{~A}_{\mathrm{N}-1} \ldots \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0} \\
\times \mathrm{B}_{\mathrm{m}} \mathrm{~B}_{\mathrm{m}-1} \ldots \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0} \\
\mathrm{~B}_{0} \times \mathrm{A}_{1} \times 10+\mathrm{B}_{0} \times \mathrm{A}_{0}
\end{array}
$$

$$
\begin{array}{r}
A_{N} A_{N-1} \cdots A_{2} A_{1} A_{0} \\
\times B_{m} B_{m-1} \cdots B_{2} B_{1} B_{0} \\
B_{0} \times A_{2} \times 100+B_{0} \times A_{1} \times 10+B_{0} \times A_{0}
\end{array}
$$

$$
\begin{array}{r}
A_{N} A_{N-1} \ldots A_{2} A_{1} A_{0} \\
\\
\times B_{m} B_{m-1} \ldots B_{2} B_{1} B_{0} \\
\ldots B_{0} \times A_{2} \times 100+B_{0} \times A_{1} \times 10+B_{0} \times A_{0}
\end{array}
$$

$$
\begin{array}{r}
A_{N} A_{N-1} \cdots A_{2} A_{1} A_{0} \\
\times B_{m} B_{m-1} \ldots B_{2} B_{1} B_{0} \\
\ldots B_{0} \times A_{2} \times 100+B_{0} \times A_{1} \times 10+B_{0} \times A_{0} \\
+\ldots B_{1} \times A_{1} \times 100+B_{1} \times A_{0} \times 10
\end{array}
$$

$$
\begin{array}{r}
A_{N} A_{N-1} \cdots A_{2} A_{1} A_{0} \\
\times B_{m} B_{m-1} \ldots B_{2} B_{1} B_{0}
\end{array}
$$

$B_{0} x A_{2} x 100+B_{0} x A_{1} x 10+B_{0} x A_{0}$ $+\ldots B_{1} x A_{1} x 100+B_{1} x A_{0} x 10$ $+\ldots B_{2} \times A_{1} \times 1000+B_{2} \times A_{0} \times 100$

$$
\begin{array}{r}
A_{N} A_{N-1} \ldots A_{2} A_{1} A_{0} \\
\times B_{m} B_{m-1} \cdots B_{2} B_{1} B_{0}
\end{array}
$$

for $i=0 . . M$
for $j=0 . . N$ term $=A_{j} \times B_{i} \times 10^{j}$ partProd = partProd + term product $=$ product + partProd $x 10^{i}$

Peasant's Multiplication

Peasant's Multiplication

37
18

5
10

Peasant's Multiplication

Peasant's Multiplication

$$
\begin{array}{rrr}
37 & 5 & 5 \times 2^{0} \times 1 \\
18 & 10 & +5 \times 2^{1} \times 0 \\
9 & 20 & +5 \times 2^{2} \times 1 \\
4 & 10 & +5 \times 2^{3} \times 0 \\
2 & 80 & +5 \times 2^{4} \times 0 \\
1 & +\frac{160}{185}+5 \times 2^{5} \times 1
\end{array}
$$

Binary Multiplication

$$
\begin{array}{r}
100101 \\
\times \quad 000101 \\
\hline
\end{array}
$$

Binary Multiplication

$$
\begin{array}{r}
100101 \\
\times \quad 000101 \\
\hline 100101
\end{array}
$$

Binary Multiplication

$$
\begin{array}{r}
100101 \\
\times \quad 000101 \\
\hline 100101 \\
000000
\end{array}
$$

Binary Multiplication

$$
\begin{array}{r}
100101 \\
\times \quad 000101 \\
\hline 100101 \\
000000 \\
100101
\end{array}
$$

Binary Multiplication

\author{

100101
$\times \quad 000101$
100101
000000
100101
000000
000000
000000

}

Binary Multiplication

$$
\begin{aligned}
& \begin{array}{r}
37 \\
\times \quad 5 \\
\hline
\end{array} \\
& \begin{array}{c}
100101 \\
\times \quad 000101 \\
100101 \\
000000 \\
100101 \\
000000 \\
000000 \\
+\quad 000000 \\
\hline 00010111001
\end{array}
\end{aligned}
$$

Binary Multiplication

$$
\begin{gathered}
100101 \\
\times 000101 \\
100101 \\
000000 \\
100101 \\
000000 \\
+000000 \\
\hline 000000
\end{gathered}
$$

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?
X Y | X*Y
$-----+----$ 1

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X	Y	$X^{\star} Y$

-----+----

0	0	0

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X	Y	$X * Y$
0	0	0
0	1	0

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X	Y	$X * Y$
0	0	0
0	1	0
1	0	0

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X	Y	$X * Y$
0	0	0
0	1	0
1	0	0
1	1	1

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X	Y	$X \star Y$
0	0	0
0	1	0
1	0	0
1	1	1

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X	Y	$X * Y$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplying two bits never carries into next column!

Bit Multiplier

A group of ' N^{\prime} AND Blocks produces the partial product from a one-bit multiplier.

Logic Block Multiplication

- With a Bit Multiplier Logic Block and a Full Adder Logic Block for each bit of multiplier, we can construct a Logic Block for performing long multiplication of binary numbers.

Logic Block Multiplication

- With a Bit Multiplier Logic Block and a Full Adder Logic Block for each bit of multiplier, we can construct a Logic Block for performing long multiplication of binary numbers.
- The Logic Block Game has very simple rules.
- Only a small number of basic blocks types required.
- Surprisingly complex logic can be constructed from very little.

