

Building Blocks

Logic and Math in Computers

* How do we get from
silicon crystals to
computers?

Logic and Math in Computers

* How do we get from
silicon crystals to
computers?

* Silicon crystals = switches
called “transistors”

_Hnm

Logic and Math in Computers

* How do we get from
silicon crystals to
computers?

* Silicon crystals = switches
called “transistors”

* Transistors = Boolean
logic blocks

_Hnm

Logic and Math in Computers

* How do we get from
silicon crystals to
computers?

* Silicon crystals = switches
called “transistors”

* Transistors = Boolean
logic blocks

* Modern computers are ‘ ﬁ ”HH
made up of millions of | ‘ ' IH
Boolean logic blocks. T

The Logic of Simple Switches

(T

Tk
'|~" 5
| =

A
> .

JAN B Light
off off off
off on on

A
> .

A B Light
off off off
off on on
on off on

JAN B Light
off off off
off on on
on off on
on on on

N
=

Lightisonif Aison OR B is on

JAN B Light
off off off
off on on
on off on

on

Another Logic Block

1117781111

17
-."" h
| -

Another Logic Block

Another Logic Block

Another Logic Block

11TeI 111179111

E'FF 0F§

JAN B Light
off off off
off on off

on off off

Another Logic Block

I-' '\.
111178111
2l

Tk

JAN B Light
off off off
off on off
on off off

on

Lighton if A is on AND B Is on

I" _'\.
[

= Pt

JAN B Light

off off off

off on off AND
on off off

on on on

The Inverter Block

off
on

Combining Logic Blocks

A

AND

oft
off
on
on

oft
on
offt
on

Combinational Logic

>

E F
- AND

A C D E F output
off off
off on
on off

on on

Combinational Logic

—{ >

E F
- AND

A C D E F output
NOT(A)

oft oft on

off on on

on off off

on on off

Combinational Logic

>

E F
. AND

A C D E F output
NOT(A) NOT(B)

off oft on on

off on on off

on off off on

on on off off

Combinational Logic

o>

E F
- AND

A C D E F output
NOT(A) NOT(B) AND(C,D)

off off on on on

off on on off off

on off off on off

on on off off off

Combinational Logic

~o>—c

E F
= AND

A C D E F output
NOT(A) NOT(B) AND(C,D) NOT(E)

off off on on on off

off on on off off on

on off off on off on

on on off off off on

The Logic Gate Game

A
.E F
AND W
B F output \
oft oft off
off on on
on off on

on on on

A

De Morgan's Law

e OR(A,B) == NOT(AND(NOT(A), NOT(B)))

De Morgan's Law

* OR(A,B) == NOT(AND(NOT(A), NOT(B)))
» NOT(OR(A, B)) == AND(NOT(A), NOT(B))
» NOT(OR(NOT(A), B)) == AND(A, NOT(B))
» NOT(OR(NOT(A), NOT(B))) == AND(A, B)

* These identities have many applications and
parallels in logic, mathematics, and computer

science.

One More Logic Block Puzzle...

Q

AND

AND

oft
off
on
on

oft
on
off
on

One More Logic Block Puzzle...

.
. - AND

NOT(A)

off off |on
off on |on

on off |off
on on |off

One More Logic Block Puzzle...

. =10
A
B C AND

A B |c D
NOT(A) NOT(B)

off off | on on
off on | on off
on off | off on

on on | off off

One More Logic Block Puzzle...

. —)
C AND

A B |c D E
NOT(A) NOT(B) AND(A,D)

off off | on on off
off on | on off off
on off | off on on

on on | off off off

One More Logic Block Puzzle...

. —)"
C AND }—

A B |c D E F
NOT(A) NOT(B) AND(A,D) AND(B,C)

off off | on on off off
off on | on off off on
on off | off on on off

on on | off off off off

One More Logic Block Puzzle...

A D AND -
— o>
c: E FF

A B |c D
NOT(A) NOT(B) AND(A,D) AND(B,C) OR(EF)

off off |on on oft oft off
off on |on off off on on
on off | off on on off on

on on |off off off off off

One More Logic Block Puzzle...
_—
G
= F
G \

off off | off
off on | on
on off | on

on on | off

Logic Blocks — Collect Them All

* There are 16 (2/4) distinct Boolean logic functions
(Logic Blocks) over two input variables.

i

Logical Completeness

* Any Boolean logic function can be built entirely
out of AND and NOT blocks,

Logical Completeness

* Any Boolean logic function can be built entirely
out of AND and NOT blocks,

e or out of OR and NOT blocks,

e or out of NAND blocks,

e or out of NOR blocks, etc., etc.

Logical Completeness

* Any Boolean logic function can be built entirely
out of AND and NOT blocks,

e or out of OR and NOT blocks,

e or out of NAND blocks,

e or out of NOR blocks, etc., etc.

* SO, what does the Logic Block Game have to do
with computer science?

Simple Addition of Binary Digits

Simple Addition of Binary Digits

o O
+ +
= O

|
= O

Simple Addition of Binary Digits

O O
+ + +
O O
1
== O

Simple Addition of Binary Digits

R = O O
+ + + +
O = O

R R RO

Simple Addition of Binary Digits

O+ 0 = 00
0O +1 =01
1+ 0 =01
1 +1 =10

Simple Addition of Binary Digits

C D

== O O
= O O
R, OOO
OFR kKO

C = AND(A, B)

O O

O O O

5 |C

O« O

O O 1

D = XOR(A, B)

O O

O O O

B |C

O« O

O O 1

Two-Bit Logic Block Computer

A C
A B| C D UMD
______ 4o oo -
0 0] 0 O
0 1] 0 1 D
1 0] 0 1 B)E
1 1] 1 0
C = AND(A,B)

D = XOR(A,B)

Two-Bit Logic Block Computer

A C
A B| C S AND
______ 4o m - - -
0 0 O
0 1] 0 1 S
el
1 1 1 O
C = AND(A,B)
S = XOR(A,B)
S iIs for “Sum”

C is for “Carry”

Bigger Blocks — The Half Adder

C = AND(A,B)
S = XOR(A,B)

S iIs for “Sum”
C Is for “Carry”

C

AND

N

x >
l"ﬁ
N

More Than Two Bits

More Than Two Bits

More Than Two Bits

O 0 O O

More Than Two Bits

O 0 0 O

More Than Two Bits

O 0 O O

More Than Two Bits

O 0 O O

More Than Two Bits

O 0 O O

More Than Two Bits

O 0 O O

More Than Two Bits

1

O 0O O O

O 0 O O

More Than Two Bits

More Than Two Bits

More Than Two Bits

More Than Two Bits

- O «— O «d

— O

N

| OHAH0OO0O — O
)
SZ = O O — O
N1 o000 dAAdA «HO
mOOOOO m01
@,
Ao OdOHO O
A1 OO dHO — -
Az A A ddO —
(Qp) =
< O00O0OHA .

All That JustTo Do A+1?

* Any N-bit number can be incremented with N
half-adder logic blocks.

* We can build a similar combination of logic blocks
to decrement any N-bit number.

* We can build an N-bit zero detector with AND
and NOT blocks.

e Where does that leave us?

Addition

Int add(int x, int y)
{ 1f (1sZero(x))
{ answer =vy; }
el se

{ answer = add(dec(x),

Inc(y)): }

Multiplication

Int nmult(int X, Int vy)
{ 1f (1sZero(y)) { answer = 0; }
el se

{ answer = add(x,
mult (x, dec(y))); };

Multiplication

int mult(int x, int vy)
{ if (iszZero(y)) { answer = 0; }
el se
{ answer = add(x,
mult (x, dec(y))); };
* Yikes!

* Is this really what my computer / calculator is doing?

Addition - the Less Scenic Route

out

W

O
a8 << M

— C.m

O cd O OO
O OO O v «

XYC]|]C S

I N

O - OO O
OO OO «
O O OO o v v

The “Full Adder” carries in and out

out

C

OR

out

: ‘
an << M
o C.m

O A cd O OO
O OO O v «

XYC]|]C S

I N

O -1 OO O
OO c—dc—d OO «d
OO OO v

The Ripple Adder

X Y X Y X Y X Y
3 3 2 2 1 1 0 0

The Ripple Adder

X Y X Y X Y X Y
3 3 2 2 1 1 0 0

C 5S555 =XXXX+YYYY +C

out 3

Multiplication (Less Scenic Route)

* Before we dive into logic block multiplication,
let's review “normal”, base-10 multiplication.

AA .AAA X BB ..BBB
N N-1 2" 170 m o m-1T 210

* Think algorithmically

* How do we learn long multiplication as grade
school children?

* How is base-10 long multiplication the same as
base-2 long multiplication?

* How is it different?

B x A Xx 10 + B x A
0 1 0] 0

B x AXx 100 + B x A Xx 10 + B x A
0 2 0 1 0] 0

B x AXx 100 + B x A x 10 + B x A
0 2 0 1 0] 0

A A A WA WA
N N1 2 1 O
X BB ...BBB
m ml 2 1 O

Box Azx 100 + Box Alx 10 + Box AO
+ ... le Alx 100 + le on 10

AN AN A WA WA
N N1 2 1 O
X BB ...BBB
m ml 2 1

Box Azx 100 + Box Alx 10 + Box AO
+ ... le Alx 100+le on 10
+ ... Bzx Alx 1OOO+BZX on 100

for 1 = 0..M
for | = 0..N
term= A x B X 10’
partProd = partProd + term
product = product + partProd x 10

Peasant's Multiplication

3/ X 5

Peasant's Multiplication

37 5
18 10

Peasant's Multiplication

37 5
18 10
9 20

Peasant's Multiplication

37 5
18 10
9 20

4 40

Peasant's Multiplication

37 5
18 10
9 20
4 40

2 80

Peasant's Multiplication

37 5
18 10
9 20
4 40
2 80
1 160

Peasant's Multiplication

37 5
18 10
9 20
4 40
2 80
1 160

Peasant's Multiplication

37 5
18 10
9 40
4 40
2 80
1 + 160

Peasant's Multiplication

37 5
18 10
9 20
4 40
2 80
1 + 160

185

Peasant's Multiplication

S/ 5
18 10
9 20 Why
4 40 does this
2 80 work?
1 + 160

Peasant's Multiplication

37

1Q
L O

1

185

Peasant's Multiplication

5

37

19
L O

o < (N

1

185

Peasant's Multiplication

5
10
- \J

37

1Q
L O

+ 160

1

185

2

1001017

10

" 37

Binary Multiplication

37 100101
X 3 x 000101

Binary Multiplication

37 100101
X 3 x 000101

100101

Binary Multiplication

37 100101
X 5 X 000101
100101

000000

Binary Multiplication

37 100101

X 3 x 000101
100101

000000

100101

Binary Multiplication

37 100101
X 5 x 000101

100101
000000
100101
000000
000000
000000

Binary Multiplication

37 100101
X 3 x 000101

100101
000000
100101
000000
000000
+ 000000

00010111001

Binary Multiplication

37 100101
X 5 x 000101
185 100101
000000
100101
000000
000000
+ 000000
00010111001

185
10

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY
_____ 4- - - -
0 O 0
0 1 0

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY
_____ 4- - - -
0 O 0
0 1 0
1 0 0

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY
_____ 4- - - -
0 O 0
0 1 0
1 0 0
1 1 1

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY

_____ 4+- - - -

0 0 0 AND
O 1 0

1 O 0

1 1 1

Back to Logic Blocks

How do we multiply two bits with Logic Blocks?

X Y| XY

_____ 4- - - -

0 0 0 JANID)

0O 1 0

1 0 0 Multiplying two bits never
1 1 1 carries into next column!

Bit Multiplier

B
Ao AND PO
A group of 'N'
A1 AND P AND Blocks
1
produces the
A AN p partial produ.ct
2 from a one-bit
L multiplier.
AN AND P

Logic Block Multiplication

* With a Bit Multiplier Logic Block and a Full
Adder Logic Block for each bit of multiplier, we
can construct a Logic Block for performing long
multiplication of binary numbers.

Logic Block Multiplication

* With a Bit Multiplier Logic Block and a Full
Adder Logic Block for each bit of multiplier, we
can construct a Logic Block for performing long
multiplication of binary numbers.

* The Logic Block Game has very simple rules.

* Only a small number of basic blocks types
required.

* Surprisingly complex logic can be constructed
from very little.

