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ABSTRACT
Algorithms designed for current and future multi-core sys-
tems, which are expected to experience an increase of the
number of cores by 100x over the next decade, must ex-
hibit strong scaling. The guarantee of progress provided
by wait-free algorithms and the fine-grained synchroniza-
tion methods used in their designs, make them desirable for
achieving this goal. However, the design and development
of advanced wait-free algorithms is often inhibited by the
limitations of portable atomic hardware operations. Typ-
ically these operations can manipulate a single address at
a time, where many concurrent algorithms need to perform
a series of operations on multiple addresses, requiring more
advanced synchronization mechanisms such as a wait-free
Multi-Word-Compare-and-Swap (MCAS).
In this paper, we present the first practical MCAS design

that is wait-free in all scenarios. This property holds even if
interrupts consistently cause a thread to retry a portion of
its operation. Our design is practical in that it is built from
only portable atomic operations (e.g. atomic reads, atomic
writes, compare-and-swap), it is efficient in its utilization of
memory (i. e. requiring only a single bit to be reserved from
each word, not requiring use of explicit memory barriers, and
requiring only four words per address in the operation). Our
performance evaluation reveals that on average our wait-free
MCAS algorithm performs 8.3% faster than other practical
approaches in all tested scenarios.

Categories and Subject Descriptors
D.4.1 [Process Management]: Concurrency; Mutual Ex-
clusion; Synchronization

Keywords
Wait-Free,Lock-Free,Non-Blocking,Concurrent,MCAS,CAS

1. INTRODUCTION
On-chip parallelism is expected to be the primary area

of parallelism growth in future multiprocessor systems [15].
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For application developers, meeting the design challenges
of current and future multi-core systems demands rethink-
ing fundamental concepts such as how shared data is acted
upon and manipulated. Specifically, to cope with the ex-
pected limitations of available memory and bandwidth, new
algorithms will have to exploit more parallelism within the
computation performed on a single datum (i.e. strong scal-
ing1).
The development and use of effective shared memory syn-

chronization is pivotal for overcoming serialization bottle-
necks and reaching necessary degrees of strong scaling. Con-
current algorithms that are based on mutual exclusion suf-
fer from performance and safety problems in multiprocessor
systems. For example, mutual exclusion can restrict the
amount of parallelism an algorithm can achieve and lead to
hazards such as deadlock, livelock, and starvation.
Non-blocking designs avoid mutual exclusion, and instead

focus on increasing the work performed with a single da-
tum. These designs rely solely on hardware atomic prim-
itives, such as compare-and-swap, to increase the amount
of work expressed in a single operation. [6]. Wait-freedom
is a property of non-blocking designs provide a guarantee
that each thread makes progress, freeing them from all three
aforementioned hazards of mutual exclusion. This differs
from lock-free algorithms which are still suitable to thread
starvation. Because of this, wait-free algorithms promise to
achieve the necessary degree of strong scaling.
Recent research has provided a number of wait-free data

structures built from portable hardware-supported opera-
tions including hash maps [16], linked lists [18], queues [11],
and et al. These data structures often depend on atomic
primitives, such as atomic read, atomic store, and Compare-
and-Swap (CAS)2 to achieve fine-grained shared-memory
synchronization in their design. Unfortunately, these atomic
primitives are typically limited to operating on a single ad-
dress. Advanced algorithms often operate on a series of ad-
dresses at a time. For these algorithms, a practical software
Multi-Word-Compare-and-Swap (MCAS) operation is a ne-

1Strong scaling is the scenario when the total problem size
stays fixed while the number of processing elements are in-
creased. The challenge is how to synchronize the work of the
processing elements in a correct and efficient manner with-
out “wasting" too many cycles on parallelism overhead. In
weak scaling, the problem size assigned to each processing
element remains constant while the total problem size may
increase. In this case, the main challenge is how to add new
processing elements to the existing system.
2An operation with infinite consensus number in the wait-
free/lock-free hierarchy



cessity. A wait-free, ABA-free MCAS operations allows a
developer to express the semantics of these advanced algo-
rithms without the underlaying MCAS algorithm reducing
the progress or safety guarantee of the algorithm.
MCAS is a programming abstraction that allows a thread

to update a series of memory addresses in a single step [5].
This update is successful only if the values at these ad-
dresses have not changed between the reading of those val-
ues and the call to MCAS. A number of recent multiproces-
sor algorithms and data structures rely on the availability
of an efficient software MCAS implementation. The use of
MCAS within those algorithms varies greatly, common uses
described in literature include:

• A non-blocking hash table implementation [13], which
requires an MCAS algorithm to support the use of
multi-word length keys and values. This design ex-
hibits improved data locality compared to other de-
signs that access keys and values through references,
which can be located on different cache lines, leading
to a high cache miss rate.

• A lock-free, array-based priority queue implementa-
tion [10], which requires an MCAS to swap a lower
priority value with a higher priority value. The au-
thors’ methodology ensures that as newer values are
pushed to the bottom, older values are pushed to the
top.

• A binary search tree implementation [5], that uses
MCAS to ensure that concurrent modifications main-
tain the balanced nature of the tree. Specifically, when
removing or adding an element that requires elements
to be rotated, the MCAS operation is able to perform
all steps of this rotation atomically.

• It has been proposed that for systems with hardware
transaction memory support (HTM), a software based
MCAS algorithm can be used instead of the HTM
when an operation exceeds the HTM’s supported size.
This is because an MCAS, can operate on an arbi-
trary number of memory locations, while most HTM
proposals limit the number of locations [14].

This paper presents the first MCAS design that is wait-
free and ABA-free in all scenarios of execution. It is built
from only portable atomic operations, and performs, on av-
erage, more operations per second than other approaches.
It performs, on average, 67.8% more operations per second
in tests with 64 executing threads.
Our design implements a strategy that replaces the value

at each address in an MCAS operation with a descriptor ob-
ject 3 which can only be removed once the MCAS operation
is completed. A thread that reads a descriptor object may
choose to help complete the MCAS operation in progress or
perform a read-through to return a value.
The key contributions of this work are:

• Wait-free progress: we present the first software MCAS
implementation built from portable atomic instruc-
tions that ensures wait-free execution in all scenarios.
This differs from other designs where helping may re-
sult in thread starvation.

3An object that allows an interrupting thread to help an
interrupted thread to complete successfully [3].

• Performance: Provides fast execution in scenarios of
high contention; in synthetic tests performed with 64
threads on a 64 core workstation, our design completes,
on average, 71.8% more 2-word MCAS operations and
82.1% more 32-word MCAS operations then other de-
signs.

• Our MCAS operation incorporates a progress assur-
ance scheme that guarantees a thread will make progress.

• Correctness and ABA-freedom: our association be-
tween descriptors and MCAS operations allows us to
detect when ABA occurs and to prevent it from caus-
ing undefined behavior.

• Composable with algorithms that require one of the
two least significant bits of the memory word. In con-
trast, Harris et al. and similar designs that require two
bits to be reserved, our design requires a single bit.

1.1 Road Map
The remainder of this paper is structured as follows: Sec-

tion 2 describes other MCAS implementations. Section 3
and 4 provide detailed descriptions of how the algorithm is
implemented. Section 5 provides an informal proof that our
model behaves properly in all cases and that of our approach
meets all claims made. In Section 6 we present experimen-
tal data that show how different implementations compare
in different use case scenarios. We conclude in Section 7.

2. RELATED WORK
Israeli et al. present a lock-free and disjoint-access paral-

lel MCAS algorithm [8]. This algorithm requires a thread
identifier to be stored alongside the value of a memory ad-
dress, limiting the number of bits available to the value.
This design does not support the ability to perform a read
through to get the current value for that address, but rather
requires a thread to help complete any pending operations
before proceeding with its own operation. This algorithm is
dependent on the LL/VL/SC primitive4, which is not pro-
vided by any contemporary system.
Anderson et al. demonstrate a wait-free MCAS algorithm

that is disjoint-access parallel, and supports read through
parallelism [1]. In contrast to [8], their design requires that
each memory word that contains a value is followed by an
additional memory word containing auxiliary information
about any pending concurrent operations. Like [8] this de-
sign requires the LL/VL/SC primitive. A simplified lock-
free version of this algorithm was presented by Moir [12].
Attiya et al. [2] have also presented improvements upon this
design.
Harris et al. [4] present a lock-free MCAS algorithm that

is disjoint-access parallel, supports read through parallelism,
and does not depend on LL/VL/SC. Rather this design uses
a CAS operation to replace the expected value at an address
with a reference to a descriptor object. This design reserves
the two lowermost bits of each address to distinguish be-
tween values and descriptor objects. To ensure correct be-
havior of the MCAS algorithm and prevent the ABA prob-
lem, Harris et al. designed a “double compare single swap"
algorithm. Compared with [8] and [1] their design shows a
significant increase in performance and portability.
4Load-link, Validate, Store Conditional; used to ensure the
value at an address has not been unknowingly modified.



Sundell [17] proposes a wait-free MCAS algorithm based
on a greedy helping scheme. In the first phase of the greedy
helping scheme, the thread attempts to place a reference
to its MCAS operation’s descriptor object at as many of
the addresses in its operation as it can. In the next phase,
if another MCAS operation holds some of these addresses
needed for this operation, then one of the two operations
will steal addresses from the other. Unlike [4], Sundel makes
no claim that his algorithm is ABA-free, and when exam-
ined his algorithm can exhibit undefined behaviors in certain
cases caused by the ABA-problem5. Additionally, the algo-
rithm degrades to lock-freedom in the case where the value
at an address continually changes between values indicating
the thread should retry.

3. STRUCTURES
This section describes the global variable, thread local

variables, and descriptor objects we use in our MCAS al-
gorithm. The descriptor objects contain the information
necessary to allow a thread operating on an address held by
an MCAS operation to determine the logical value of that
address and, if necessary, help complete the MCAS opera-
tion.

• MCasDescriptor: a block of memory used to describe
an MCAS operation, it is composed of an arbitrary
number of CasRows followed by the constant 0x1.

MCasDescriptor { CasRow [ ] , 0x1 } ;

• CasRow or Compare-and-Swap Row, is a structure that
holds the following word-length values in the following
order: address to be operated on (address), the ex-
pected value at the address (expectedValue), the value
to replace the expected value if the MCAS operation
succeeds (newValue), and a pointer used to hold a ref-
erence to an MCasHelper object that was placed at this
address (MCasHelperPointer).
These four words are used to describe a particular step
of the MCAS operation. All except for the MCasHelper-
Pointer are constants. The MCasHelperPointer can
only go from null to a non-null value, as such it will
not change more than once.

CasRow { address , expectedValue ,
newValue , MCasHelperPointer } ;

• MCasHelper is an object used to hold the value at an
address constant until the MCAS operation referenced
by it is completed. It contains a single word, cr, that
holds a reference to a CasRow in an MCasDescriptor.
This CasRow is its associated CasRow only if the MCasHelper-
Pointer word in it holds a reference to that MCasHelper.

s t r u c t { CasRow ∗ cr }MCasHelper ;

• nThreads is a global constant representing the number
of threads executing in the system.

• maxFail is a global constant representing the maxi-
mum number of times a thread will retry an operation
before making an announcement.

• pendingOpTable a global array of length nThreads where
each thread has a specific position to write an an-
nouncement.

5 See Sec. 5.3 for more detail.

Figure 1: Example of a Successful MCAS operation

• threadID is a thread local value used to identify the
position in the pendingOpTable that the thread writes
global announcements into.

• checkID is a thread local value used to identify the
position in the pendingOpTable that the thread checks
for a global announcement. Before each check, this
value is incremented by one.

4. ALGORITHMS
This section describes in detail the two phases of execu-

tion of our MCAS design. The first phase consists of plac-
ing MCasHelper objects at each address, if the value at the
address matches the expected value. The first phase is com-
plete when the MCasHelper pointer of the last CasRow holds
a non-null reference. The second phase consists of replac-
ing each MCasHelper with its logical value. For brevity, the
bit masking operations are omitted if a value read holds an
MCasHelper bitmark, then the next step would be to unbit-
mark the local copy before dereferencing it.
Figure 1, presents visual representation of a successful

MCAS operation and the relation between a MCasHelper
and the CasRow it references.

4.1 Algorithm 1 - Begin MCAS operation
This function takes an MCasDescriptor object and the

address of the last CasRow in the object and its return value
indicates whether or not the MCAS operation was success-
ful. Before a thread commences its own operation, it calls
helpIfNeeded (Alg. 4) which examines one other thread to
determine if that thread is being repeatedly preempted and,
if necessary, helps complete that thread’s operation. After
nThreads calls to helpIfNeeded all threads will have been
examined this thread.
This function then calls placeMCasHelper (L.6) until ei-

ther all addresses have been acquired, or it has failed to
acquire an address. It fails to acquire an address when the
current value is not equal to the expected value.
Unlike other approaches, this design does not use a state

variable. Rather, the MCasHelper pointer of the last CasRow
determines whether or not the operation is in progress, suc-
cessful, or failed. If it holds null, then the operation is
in progress if it holds ~0x0, then the operation has failed
otherwise, it is successful.
After the result of the operation has been determined,

it calls removeMCasHelper (L.13), which iterates over each
CasRow and replaces the MCasHelper at each address with
its logical value.

4.2 Algorithm 2 - Acquire an address.
This function tries to acquire an address for an MCAS op-

eration by attempting to place a reference to an MCasHelper,



Algorithm 1 invokeMCAS CasRow ∗ mcasp, CasRow ∗
lastRow

1: helpIfNeeded()
2: __thread tl_mcas=mcasp
3: placeMCasHelper(tl_mcas++, lastRow, true, 0)
4: repeat
5: if lastRow->mch == 0x0 then
6: placeMCasHelper(tl_mcas++, lastRow, false, 0)
7: else
8: break
9: end if
10: until tl_mcas == lastRow
11: pendingOpTable[threadID]=null
12: res= (lastRow->mch != ~0x0)
13: removeMCasHelper(res,mcasp, lastRow)

return res

if the expected value (ev) for the address matches the logical
value currently at the address (cv).

• If the logical value of the address is not equal to the
expected value, then the thread will attempt to set
the MCasHelper pointers of cr and lastRow to failed
(~0x0) before returning(L. 56).

• If the address holds a reference to an MCasHelper ob-
ject that references cr (L. 31), the thread will at-
tempt to set the MCasHelper pointers of cr to that
MCasHelper before returning(L. 33).

• Otherwise, if the logical value at the address is equal to
the expected value (L. 18, L. 38), the thread attempts
to replace the value with an MCasHelper, mch, that
references cr (L. 18, L. 42).

If the thread failed to place mch it will use the returned
result of the CAS operation to re-evaluate the current value
at the address. If a thread successfully places mch (L. 18,
L. 42), it will then attempt to associate cr with mch(L. 21,
L. 33). If the the thread fails to associate them, this indi-
cates that some other thread completed this MCAS opera-
tion, and that mch should be removed (L. 23, L. 35, L. 47).
For example in Fig. 1, the MCasHelper at address Aj does

not match the value of the MCasHelperPointer in the CasRow
it references, the cause of this is examined in section 5.3.
We optimize the first time a thread calls placeMCasHelper

for an MCAS operation (L. 16) to allow an MCasHelper to
be associated with a CasRow before placing the MCasHelper
at an address. This optimization is available only for the
first CasRow when the MCasDescriptor is not visible to other
threads. This reduces the number of CAS operations needed
by one.
If a thread is unable to complete its operation in maxFail

number of attempts, then it will write its own MCAS opera-
tion into a global array (L. 12). Other executing threads are
guaranteed to eventually see this operation, and attempt to
help complete it. Our association between a CasRow and an
MCasHelper ensures that an operation will not be repeated
when multiple threads attempt to complete it.

4.3 Algorithm 3 - Should Replace MCasHelper
This algorithm determines whether the logical value of

mch matches ev. First, it checks if either the expected value
or new value of the CasRow referenced by mch matches ev
(L.2), if not it returns false. A thread examining mch0 from
Fig. 1 would compare ev to Ev0 and Nv0.
Next, it calls helpComplete to ensure that the MCAS op-

eration is no longer in progress and to get the result of the
operation. If the MCAS operation was successful and mch

Algorithm 2 void placeMCasHelper CasRow ∗
cr, CasRow ∗ lastRow, boolfirstT ime, intrDepth

1: address=cr->address
2: ev=cr->expectedValue
3: mch= allocateMCasHelper(cr)
4: cv= *address
5: tries=0
6: while true do
7: if tries++ == maxFail && pendingOpT-

able[threadID]==null then
8: if firstTime then
9: cr->mch = null
10: firstTime = false
11: end if
12: pendingOpTable[threadID]= tl_mcas
13: end if
14: if !isMCasHelper(cv) then
15: if firstTime then
16: cr->mch=mch
17: end if
18: cv = CAS(address, ev, mch)
19: if cv == ev then
20: if !firstTime then
21: cv = CAS(&cr->mch, null, mch)
22: if cv != null && currentValue != mch then
23: cv = CAS(address, mch, ev)
24: end if
25: end if
26: break
27: else
28: continue
29: end if
30: else
31: if cr==mch->cr then
32: mch=cv
33: cv = CAS(&cr->mch, null, mch)
34: if cv != null && cv != mch then
35: cv = CAS(address, mch, ev)
36: end if
37: break
38: else if shouldReplace(ev, cv, rDepth then
39: if firstTime then
40: cr->mch=mch
41: end if
42: cv2 = CAS(address, cv, mch)
43: if cv2 == currentValue then
44: if !firstTime then
45: cv = CAS(&cr->mch, null, mch)
46: if cv != null && cv != mch then
47: cv = CAS(address, mch, ev)
48: end if
49: end if
50: break
51: else
52: continue
53: end if
54: end if
55: end if
56: CAS(&lastRow->mch, null, ~0x0)
57: CAS(&cr->mch, null, ~0x0)
58: break
59: end while

is associated with its CasRow, then newValue is the logical
value of mch. Otherwise, expectedValue is the logical value
of mch.
For example in Fig. 1, the logical value of mchi would be

Nvi and the logical value of mchz would be Evj .
A boolean is returned indicating if the logical value matches

ev (L.6,L.10).

4.4 Algorithm 3 - Remove MCasHelpers
This function removes the descriptors that were placed

during this MCAS operation. For each CasRow in the MCasDescriptor,
it attempts to replace the associated MCasHelper with its
logical value. If the MCAS operation was successful, then
each MCasHelper is replaced by the newValue from its CasRow



Algorithm 3 shouldReplace void ∗ ev, MCasHelper ∗
mch, intrDepth

1: cr = mch->cr
2: if cr->expectedValue != ev && cr->newValue != ev then

return false
3: else
4: res=helpComplete(cr, rDepth+1)
5: if res && (cr->mch == mch) then
6: if (cr->newValue == ev) then return true
7: elsereturn false
8: end if
9: else
10: if cr->expectedValue == ev then return true
11: elsereturn false
12: end if
13: end if
14: end if

Otherwise, it is replaced by the expectedValue

4.5 Algorithm 4 - Help delayed thread
Before a thread attempts an operation, it checks one other

thread to see if that thread needs help completing its oper-
ation. This check is performed by examining the checkId
position of the pendingOpTable (L. 2). Before each check
the thread will increment checkId by one. This ensures that
all positions in the table will be examined after numThread
calls to this function. This scheme is derived from the help-
ing approach presented by Kogan et al. in [9]. If a delayed
operation is found, then the thread invokes helpComplete
before returning.

Algorithm 4 helpIfNeeded intrDepth

1: checkId=(checkId+1)%nThreads
2: cr=pendingOpTable[checkId]
3: if cr != null then
4: helpComplete(cr, rDepth)
5: end if

4.6 Algorithm 5 - Help another thread
This function allows a thread to help complete another

thread’s delayed MCAS operation. The thread will first
search for the last CasRow, lastRow, of the MCasDescriptor,
allowing it determine if the operation has been completed
or if it is still in progress. Then the thread repeatedly calls
placeMCasHelper until the operation is complete

Algorithm 5 helpComplete CasRow ∗ mcas, intrDepth

1: lastRow=cr
2: while lastRow->address != 0x1 do
3: lastRow++
4: end while
5: lastRow–
6: repeat
7: if lastRow->mch == 0x0 then
8: placeMCasHelper(mcas++, lastRow, false, rDepth)
9: if mcas->mch == ~0x0 then
10: break
11: end if
12: else
13: break
14: end if
15: until mcas == lastRow

return (lastRow->mch != ~0x0)

5. CORRECTNESS

5.1 Semantics

An MCAS operation is successful and subsequently re-
places the value at each address with a new value, if each
address matches the respective expected value. To provide
correctness, this must appear to happen atomically, such
that overlapping operations cannot read a new value at one
address and then read an old value at another address. To
guarantee this behavior we use linearizability as our main
correctness guarantee. Linearizability is a correctness prop-
erty that requires for each operation call to “appear to take
effect instantaneously at some moment between its invoca-
tion and response" [7, p. 54]. If a class is composed of
linearizable functions, then a legal sequential history of ex-
ecutions can be derived from every concurrent execution.
In the derived sequential history, operations are ordered
according to the moment of time of their invocation and
response. Operations with overlapping invocation and re-
sponse events, are ordered according to their linearization
points. We show that concurrently executing MCAS opera-
tions are linearizable.
Another property our algorithm provides is wait-freedom,

which is a progress condition that guarantees that each oper-
ation completes in a finite number of steps. This differs from
lock-freedom, which guarantees that at least one operation
completes. Providing wait-free execution is important for
systems where concurrency and real-time response are criti-
cal. We show that our algorithm is wait-free by determining
the maximum number of steps it takes for a function call to
return. This upper bound is derived from the known total
number of threads and can be fine-tuned by a user-defined
threshold value.
Below we present a set of lemmas in support of our hy-

pothesis that our MCAS algorithm is linearizable, ABA-free,
and wait-free. We argue that in no case does our design de-
viate from its intended behavior, each step of the MCAS
operation completes in a finite number of steps, and that
cases of ABA are avoided.

5.2 Linearizability
This section introduces a set of lemmas and theorems that

show our design is linearizable.

Lemma 1. After initialization an MCasDescriptor object
remains constant, except for the MCasHelper pointer in each
CasRow.

Lemma 2. Once an MCasHelper object is placed at an ad-
dress, its internal pointer is constant.

Lemma 3. The MCasHelper pointer word of a CasRow can
only transition from null to a non-null value.

Lemma 4. The first CasRow of an MCasDescriptor has
its MCasHelper pointer set before any other CasRow in the
MCasDescriptor and for i > 1, if the ith CasRow has its
MCasHelper pointer set, then the ith − 1 CasRow has its
MCasHelper pointer set.

Lemma 5. The CasRow referenced by an MCasHelper holds
the value replaced by the MCasHelper, expectedValue, and
the value to replace the MCasHelper, newValue, if the MCAS
operation has succeeded.

Lemma 6. A thread can correctly determine whether to
use the expectedValue or newValue from a CasRow for the
logical value at an address holding an MCasHelper.



Theorem 1. Our MCAS algorithm is linearizable.

To support Theorem 1, we identify the linearization point
of an MCAS operation, which is the CAS operation that sets
the MCasHelper pointer of the last CasRow. If the MCasHelper
pointer of the last CasRow is set then either, a thread has set
it to a failed marker (~0x0) or it references an MCasHelper.
Lemma 4 shows that if the MCasHelper pointer of the last
CasRow references an MCasHelper then each CasRow in the
MCasDescriptor has acquired an address, meeting the cri-
teria for a successful MCAS. Lemmas 5 and 6 support our
claim of linearizability by showing that if an address holds
an MCasHelper then the determined logical value of that
object is linearizable.
Any thread that determined a logical value of an MCasHelper,

can be ordered before or after the MCAS operation based
on the value read from the last CasRow. Additionally, if two
MCAS operations have overlapping addresses, then they are
ordered based on which operation acquires the lowest com-
mon address first. The other operation will be forced to
help complete this operation before it retries to acquire the
address.
If a thread is accessing an address that has been acquired

by an MCAS operation, then the logical value at the address
is determined as follows:

• If the operation is in progress , then expected value is
the logical value of the address.

• If the operation successfully completed, then the new
value of the CasRow is the logical value only if the
CasRow is associated with that MCasHelper.

• Otherwise, the operation failed or the CasRow is asso-
ciated with a different MCasHelper6, and the expected
value of the CasRow is the logical value.

5.3 The ABA Problem
This section presents the ABA problem and how it is han-

dled in our MCAS algorithm. Here we argue that if a thread
helps to complete another thread’s MCAS operation, then
this does not introduce undesired behavior.
Our design place references to MCasHelper objects at ad-

dresses instead of references directly to a CasRow or MCasDescriptor
because that such designs are prone to the ABA problem.
Harris et al. avoided the ABA problem by using a “double
comp rare, single swap" algorithm at the cost of depending
on explicit memory barriers and additional memory manage-
ment. Sundel makes no claim of ABA freedom, and it can
be shown that his presented design is ABA prone. Fig. 2
presents an example of the ABA problem occurring when
a thread helps bring another thread’s MCAS operation to
completion. Fig. 3 presents the expected history of the value
at address ai and history of the values at the address when
ABA occurs.
In designs that place references directly to the operation,

there are no mechanism to distinguish between a reference
to a descriptor placed during the operation and a reference
placed after the operation has been completed. Our de-
sign avoids this by placing a reference to a descriptor ob-
ject, MCasHelper, instead of the MCAS descriptor object,
MCasDescriptor. To distinguish between an MCasHelper
placed during the operation and one place after, an asso-
ciation is made between a CasRow and an MCasHelper.
6See Section 5.3 for details

Figure 2: Example of ABA

T: 0 1 2 ... t t+1 t+2
Expected: Evi mcas Nvi ... Evi Evi Evi

ABA: Evi mcas Nvi ... Evi mcas Nvi

Figure 3: Example of ABA

Theorem 2. The presented algorithm is ABA free.

If a thread determines it must help complete another thread’s
MCAS operation in order to make progress with its own,
then it will attempt to acquire the rest of the addresses
for that MCAS operation. From Lemma 4 the thread is
aware that all previous addresses have been acquired and
from Lemma 3, if an address has already been acquired,
it cannot be re-acquired after the operation has been com-
pleted. If a thread places an MCasHelper at an address for
a CasRow that is already associated with an MCasHelper,
then, by Lemma 3, it will fail to associate the CasRow with
its MCasHelper. This failure will cause the MCasHelper to
be replaced by the expectedValue word of the CasRow.

5.4 Progress Guarantee
This section supports our claim that the presented algo-

rithm is wait-free by describing the maximum number of
steps our design takes to complete an MCAS operation. We
start by showing our design is lock-free, then examine when
a thread must retry its operation, and derive an upper bound
on the number of steps to complete an operation.

Lemma 7. Addresses in an MCAS operation are finite
and sorted in a descending order.

Theorem 3. Our design is lock-free

To prove our algorithm is lock-free we start with the fol-
lowing observations:
From Lemma 7, if each address could be acquired in a fi-

nite number of steps, then the MCAS operation completes in
a finite number of steps. Addresses are sorted in a descend-
ing order, which prevents possibility of cyclical dependency
of MCAS operations and places a physical bound on length
of recursive helping. If a thread successfully acquires an
address, then that thread has made progress toward com-
pleting its operation. Failing to acquire an address, im-
plies some other thread has acquired or released the address.
Both cases supporting our claim of lock-freedom, Theorem 3,
since one thread is always making progress.
To show our algorithm is wait-free, we examine the case

where a thread fails to acquire an address. If the result of
a failed CAS matches the expected value, then the thread
must retry. Otherwise, the MCAS operation can be allowed
to return false.

Lemma 8. The helping scheme ensures a thread cannot
be indefinitely being prevented from acquiring an address.



Lemma 9. The maximum number of attempts to acquire
an address is equal to maxF ail + nT hreads2.

If a thread repeatedly fails to acquire an address, then
it will make an announcement indicating that it is delayed.
From Alg. 4, before beginning an MCAS operation, each
thread checks another thread for such an announcement,
helping complete an operation if necessary. In the worst
case, each other thread will have just checked the delayed
thread and found that it did not need help. Allowing each of
them to complete nThreads more MCAS operations before
checking that thread again, Lemma 9.

Theorem 4. The presented algorithm is wait-free.

Our algorithm is wait-free because a thread can acquire
all addresses in an MCAS operation, thus completing it,
in a finite number of steps by ensuring that if a thread is
continually prevented from acquiring an address, then the
threads that are preventing it will help that thread complete
its operation when they observe a delayed thread.

6. EVALUATION
In this section we evaluate our algorithm’s performance

in two benchmarks.

6.1 Test Environment
All tests were run on a SuperMicro server, with four sixteen-

core AMD Opteron 6272 processors at 2.1 GHz, and a total
of 314 gigabytes of RAM. The machine was running 64-bit
Ubuntu Linux version 11.04, and all code was compiled with
g++4.7, with level three optimizations enabled.
In the presented benchmark we compare the performance

of our wait-free algorithm against the lock-free MCAS pre-
sented by Harris et al. When tested, Sundell’s wait-free
MCAS exhibited behavior that produced inconsistencies in
the testing methodology, invalidating the test results. Both
implementations were provided by their respective authors [17,
5].
For each benchmark and MCAS algorithm tested, a sep-

arate executable file was generated. In each benchmark, a
main thread initialized all global values and created a set
of worker threads. When each worker thread is ready, the
main thread signals them to begin execution. After sleeping
for a specified amount of time, the main thread signals the
end of execution. The sum of the total number of opera-
tions completed by each thread was logged and the average
of fifteen runs is used in the following graphs.

6.2 Multi-word object
The first benchmark consisted of each thread attempting

to update a shared multi-word object. In this benchmark,
we examined the effect of increasing the number of threads
and the length of the multi-word object.
Graphs 4a, 4b, and 4c depict the effects of increasing

the number of threads updating a shared multi-word ob-
ject. The performance results show that, in this scenario, on
average the WFMCAS performs 10% more operations per
second when compared to the LFMCAS. When the num-
ber of threads is 16, on average the WFMCAS performs
35.4% more operations per second. Increasing the number
of threads to 32 and 64, we perform 50.3% and 77.1%, re-
spectively, more operations than the LFMCAS.
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Figure 4: Multi-word object

Not only does our design achieve a higher throughput
of operations than the LFMCAS, but it also provides a
stronger guarantee of progress, wait-freedom. We attribute
the difference in performance to how we manage the ABA
problem; where the LFMCAS uses auxiliary data structures
and memory barriers, our design uses an association. This
association allows us to reduce the number of CAS opera-
tions required by our algorithm to 3M-1, while the LFMCAS
requires 3M+1 CAS operations in addition to depending on
memory barriers for correctness.
Graph 4d presents the effect on performance of increasing

the number of words in the object while keeping the num-
ber of executing threads at 64. In this graph, WFMCAS
performs on average 67.8% more operations than the LFM-
CAS, indicating our design scales better than the LFMCAS,
as the size of the MCAS operation increases.
For MCAS operations on a large number of addresses, the

LFMCAS helping scheme requires a thread to load each ad-
dress in the operation to determine if it holds a reference to
the operation. Depending on where these addresses are lo-
cated, this may generate a large number of cache misses.
Our WFMCAS design’s association between CasRow and
MCASHelper objects enables a thread to iterate through the
MCAS operation instead of loading each address, to deter-
mine if an address has been acquired or not.

6.3 Sorted-Double Linked list
In the sorted double-linked list (SDLL) benchmark, each

thread repeatedly tries to insert and delete elements from
the data structure. The probability of a thread performing
an insert operation was varied between 25% and 100%. Each
thread randomly generates two integers; the first is used to
select whether to perform an insert or delete operation, and
the second is used as the operand of the selected operation.
To perform an insert or delete operation, a thread will

linearly search the queue for a value that is greater than
or equal to the specified value. Then using a four-word-
long MCAS operation attempt to apply its operation. For
example, when inserting node between parent and child, an
MCAS operation will be invoked to change the parent->next
to node, child->previous to node, node->previous to parent,
and node->previous to child.
This design uses a four word long MCAS operation along

with the announcement scheme described earlier to provide
a wait-free progress guarantee, if the underlying MCAS op-



eration is also wait-free.
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Figure 5: Sorted-Double Linked list

Our experiments revealed that varying the ratio of insert
to remove operations had minimal effect on the overall scal-
ability of the SDLL; graphs 5a and 5b are representative of
our experiments. The graphs show that as the number of
threads increases, both implementations scale equally well
and on average, over all tests, the WFMCAS performs 2%
more operations per second than the LFMCAS. An expla-
nation for the lack of significant speedup in SDLL, can be
found by examining the run time of the application with re-
spect to Amdahl’s law. The cost of performing the MCAS
operation is eclipsed by both the random number genera-
tion and the O(n) search performed on the list. When the
list is even moderately long, 84% of the execution time is
spent searching it. These benchmarks revealed that when
implemented in a practical data structure, not only does
our design allow the data structure designer to use MCAS
a wait-free approach, but they can do so without having to
sacrifice performance.

7. CONCLUSION AND FUTURE WORK
This paper presented a wait-free, ABA-free MCAS algo-

rithm that is practical for a variety of applications. Our im-
plementation provides the progress guarantee of wait-freedom
while providing improved performance over a lock-free MCAS
implementation. We discussed the relevance of this work
and its applicability in the real-world. Future work involves
generalizing our design to provide additional functionality
and flexibility by allowing the developer to specify more
complex operations on each address.
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