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Abstract

An L-isomorphism between inverse semigroups S and T is an isomorphism
between their lattices L(S) and L(T ) of inverse subsemigroups. The author and
others have shown that if S is aperiodic – has no nontrivial subgroups – then any
such isomorphism Φ induces a bijection φ between S and T . We first characterize
the bijections that arise in this way and go on to prove that under relatively weak
‘archimedean’ hypotheses, if φ restricts to an isomorphism on the semilattice of
idempotents of S, then it must be an isomorphism on S itself, thus generating a
result of Goberstein. The hypothesis on the restriction to idempotents is satisfied
in many applications. We go on to prove theorems similar to the above for the
class of completely semisimple inverse semigroups.
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Over the past quarter-century, several authors have investigated the extent to which
an inverse semigroup S is determined by its lattice L(S) of inverse subsemigroups (see
the survey [8] and the monograph [12]): given an L-isomorphism, that is, an isomorphism
Φ : L(S) → L(T ) for some inverse semigroup T , how are S and T related? It is easily
seen that since Φ restricts to an L-isomorphism between their respective semilattices of
idempotents, ES and ET , it induces a bijection φE between them. Following the lead of
Goberstein [4] we focus here on the situation where φE is an isomorphism (see below for
a rationale for this simplification).

It has long been known that φE extends to a bijection φ : ES ∪NS → ET ∪NT , where
NS denotes the set of elements that belong to no subgroup of S. In the aperiodic (or
‘combinatorial’) case where, by definition, all subgroups are trivial, φ is then a bijection
between S and T . In turn, φ induces Φ in the obvious way. In this note we first
characterize the bijections so obtained, in Theorem 2.3, and then in Theorem 4.3 find
a general sufficient condition in order that this bijection should be an isomorphism,
improving on some results of Goberstein [4].
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Since groups are not generally determined by their subgroup lattices, proving lattice
determinability of nonaperiodic inverse semigroups must involve either some assump-
tions on the lattice determinability of the subgroups or some structural ‘tying-in’ of the
subgroups into the overall form of the semigroup. It was shown by Ershova (see [12])
that as long as each nonaperiodic D-class contains at least two idempotents (essentially
a statement about the principal factors) then the partial bijection φ can be extended to
a bijection θ between S and T . If S is also completely semisimple, θ again induces Φ.
Again, we characterize the bijections that can arise in this way, in Theorem 2.5. We go
on to show in Theorem 4.5 that, under similar hypotheses to the aperiodic case, θ is again
an isomorphism. However, we shall see that assuming that Φ induces isomorphisms on
both the semilattice of idempotents and the principal factors does not suffice to induce
an isomorphism on the semigroup itself, without the extra hypothesis of Theorem 4.5.

The assumption that φE be an isomorphism is satisfied in many circumstances. For
instance this occurs whenever S is simple or is E-unitary with a greatest J -class which
is nontrivial [7]. It also arises from external conditions. For instance, Goberstein showed
(loc. cit.) that “most” isomorphisms between the inverse semigroups of partial automor-
phisms of two inverse semigroups induce an L-isomorphism of this type. In [2], [3], K.H.
Cheong and the author studied Co -isomorphisms between inverse semigroups – isomor-
phisms between their lattices of convex inverse subsemigroups (which are not generally
sublattices of the lattices of all inverse subsemigroups) – and reduced their study to those
that induce an isomorphism between the respective semilattices of idempotents. In the
completely semisimple case, they showed that Co -isomorphisms with this property are
equivalent to L-isomorphisms of the same type. This equivalence is not true in general.

The two theorems on the bijections that induce L-isomorphisms were inspired by
Cheong’s initial work on the corresponding problem for Co -isomorphisms.

1 Preliminaries

The lattice L(S) of inverse subsemigroups of an inverse semigroup S has as its zero the
empty inverse subsemigroup. If U, V ∈ L(S), their join is denoted U ∨V and is the same
as their join as subsemigroups. If A ⊆ S, we denote by 〈A〉 the inverse subsemigroup
that it generates. The idempotents of S form a semilattice, denoted ES. An inverse
subsemigroup of S is full if it contains ES. The filter [ES, S] in L(S) is denoted LF(S).
Note that for a group G, LF(G) coincides with the subgroup lattice but the empty
inverse subsemigroup must be adjoined to obtain L(G).

The natural partial order on an inverse semigroup S is defined by a ≤ b if a = aa−1b;
various useful equivalent properties may be found in [11], along with such basic semigroup
concepts as Green’s relations, ideals and principal factors. The notation a||b means that a
and b are incomparable with respect to that order. An inverse subsemigroup U is convex
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if a ∈ S, u, v ∈ U and u ≤ a ≤ v imply that a ∈ U . The convex inverse subsemigroups
form a lattice Co (S) which is not, in general, a sublattice of L(S). See [2], [3] for a
comprehensive study of that lattice, with applications of the results contained herein.

An inverse semigroup is aperiodic, or combinatorial , if all of its subgroups are trivial;
S is completely semisimple if each principal factor is completely 0-simple or is a group
(equivalently, S contains no bicyclic subsemigroup – see below for the definition of the
latter); S is E-unitary if whenever a ≥ e ∈ ES then a ∈ ES.

We review the basics of L-isomorphisms of inverse semigroups. For surveys see [8]
and [12]. Let Φ : L(S) → L(T ) be an isomorphism. Since ESΦ = ET , Φ restricts to
an isomorphism L(ES) → L(ET ). It also follows that Φ restricts to an isomorphism
LF(S) → LF(T ).

Any L-isomorphism Φ between semilattices E and F induces a bijection φ : E → F
by the rule 〈eφ〉 = 〈e〉Φ, e ∈ E, and is in turn induced by φ, in the sense that AΦ = Aφ
for every subsemilattice A. The bijection φ is characterized by the weak isomorphism
property: if e, f ∈ E then e||f if and only if eφ||fφ, in which case (ef)φ = eφfφ.

If Φ is an L-isomorphism between inverse semigroups S and T , we shall denote the
weak isomorphism between ES and ET by φE. Note that the class of groups is closed
under L-isomorphisms, since groups are characterized among inverse semigroups by the
property that their semilattices of idempotents are trivial, and φE is bijective. Hence if
e ∈ ES then Φ restricts to an L-isomorphism between the maximal subgroups He and
HeφE

. In particular, if S is aperiodic, so is T .
Let NS denote the set of elements of S that do not belong to a subgroup. For each

a ∈ NS, by [7] there is a unique element b of T such that 〈a〉Φ = 〈b〉, (aa−1)φE = bb−1

and (a−1a)φE = b−1b. Rephrasing this statement, setting {b, b−1} = {aφN , a
−1φN} yields

choice functions φN : NS → NT that are bijections (since the same process may be applied
to Φ−1), and satisfy a−1φN = (aφN)−1, {aa−1, a−1a}φN = {aφN(aφN)−1, (aφN)−1aφN}
and 〈a〉Φ = 〈aφN〉 for every a ∈ NS. Since φE also satisfies the above properties, its
union with any φN yields a bijection φ : ES ∪NS → ET ∪NT with the same properties.
The uniqueness of b implies that any bijection that induces Φ is of this type. Note that
by always choosing aφN to be b itself, the partial bijection φ will then uniquely preserve
L and R. We follow [12] in terming this the ‘base partial bijection’. While it will be
convenient to make that assumption when necessary, we shall not always do so. We
summarize the above discussion.

RESULT 1.1 Let Φ be an L-isomorphism between inverse semigroups S and T . There
is a bijection φ : ES ∪NS → ET ∪NT , unique up to possible interchange of aφ and a−1φ
for each a ∈ S, such that φ restricts to a weak isomorphism from ES to ET , 〈a〉Φ = 〈aφ〉
and {aa−1, a−1a}φ = {aφ(aφ)−1, (aφ)−1aφ} for every a ∈ ES ∪NS.

There is a unique choice of φ that preserves L and R, namely the base partial bijection.
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If S is aperiodic, φ becomes a bijection of S upon T that induces Φ, the properties
of which we now summarize. The final statement below is a compilation of results of
Ershova and the author that may be found in §42 of [12].

RESULT 1.2 Let S be an aperiodic inverse semigroup. Any L-isomorphism Φ from S
to a (necessarily aperiodic) inverse semigroup T is induced by a bijection φ : S → T ,
unique up to possible interchange of aφ and a−1φ for each a ∈ S, such that φ restricts
to a weak isomorphism from ES to ET and {aa−1, a−1a}φ = {aφ(aφ)−1, (aφ)−1aφ} for
every a ∈ S. There is a unique choice of φ that preserves L and R, namely the base
bijection. That choice of φ restricts to an isomorphism 〈a〉 → 〈aφ〉 for each a ∈ S.

We now turn to the nonaperiodic situation, keeping in mind the remarks in the
introduction. Ershova showed (see [12, §43.7]) that the base partial bijection φ : ES ∪
NS → ET ∪NT may be extended to a bijection θ : S → T as long as each nonaperiodic
D-class contains at least two idempotents, as follows. For each idempotent e in such a
D-class, choose an element re of NS ∩Re. Each a ∈ He may be expressed uniquely in the
form a = res

−1 for some s ∈ Hre ; put aθ = reφ(sφ)−1. (Define θ = φ on NS.) It follows
from the construction that since φ preserves L and R, so does θ. It was also shown that
if Φ is induced by an isomorphism κ : S → T , then κ = θ. Again following [12], when θ
is defined it is termed the base bijection associated with Φ.

We conclude these preliminaries with some further background on inverse semigroups.
According to [11, Theorem IX.3.11], each monogenic inverse semigroup is defined by

exactly one of the following relations, where k, l are positive integers: (i) ak = a−1ak+1;
(ii) aka−1 = a−1ak; (iii) ak = ak+l; (iv) a = a. Each has a type associated with it: those
in (i) are of type (k,∞+) and possess a bicyclic kernel (least ideal); those in (ii) are of
type (k,∞) and have an infinite cyclic group kernel; those in (iii) are of type (k, l) and
have a finite cyclic group kernel; that in (iv) is free. In the first three cases, if k = 1 then
the semigroup itself is bicyclic, infinite cyclic or finite cyclic, respectively. If k ≥ 2, then
it is an extension of its kernel by the quotient of the free monogenic inverse semigroup
modulo the ideal generated by ak (the quotient being a semigroup of type (k, 1)).

A semigroup is group bound , or an epigroup, if some power of each element belongs
to a subgroup. From the classification above, it can be seen that a monogenic inverse
semigroup is group bound if and only if its semilattice of idempotents is finite. In general,
therefore, an inverse semigroup is group bound if and only if it contains no free monogenic
nor bicyclic inverse subsemigroup. All periodic inverse semigroups are group bound.

We review from [11, page 47] the construction of retract ideal extensions. Let B be
an inverse semigroup and A an inverse semigroup wih zero. Put A∗ = A−{0}. Suppose
ψ : A∗ → B is a partial homomorphism, that is, aψa′ψ = (aa′)ψ whenever a, a′, aa′ ∈ A∗.
Then the set S = A∗∪B becomes an inverse semigroup under the operation that extends
that in B; extends the partial operation in A∗; is given by aa′ = aψa′ψ when a, a′ ∈ A∗
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but aa′ = 0 in A; and by ab = aψb when a ∈ A∗, b ∈ B, and similarly for ba. It is the
retract (and ideal) extension of B by A defined by ψ. (Taking the union of ψ with the
identity map on B yields a retraction of S.)

2 Characterizing the induced bijection

LEMMA 2.1 Let S and T be inverse semigroups and suppose φ : S → T is a bijection
that induces an isomorphism LF(S) → LF(T ). If a, b ∈ S, b 6∈ ES and b < a then
bφ ≤ (aφ)n for some nonzero integer n.

Proof. If b < a then b = bb−1a ∈ ES ∨ 〈a〉, the full inverse subsemigroup of S
generated by a, so bφ ∈ ET ∨ 〈aφ〉. Since ESφ = ET , if b 6∈ ES then bφ 6∈ ET . Thus bφ
can be expressed as the product of an idempotent and a nonzero power of aφ, that is,
bφ ≤ (aφ)n for some nonzero integer n.

Following the terminology of [9], a product ab in an inverse semigroup is restricted if
a−1a = bb−1, in which case aRabLb.

The following lemma is well known, in that it may also be deduced from the standard
constructions of the multiplication on an inverse semigroup by way of the restricted
products and the partial order (for example, see [9]).

LEMMA 2.2 Let S be an inverse semigroup. A subset A of S is an inverse subsemi-
group if and only if (a) it is closed under restricted products and inverses, (b) EA is a
subsemilattice of ES and (c) if b ∈ S, bb−1 ∈ A and b < a ∈ A, then b ∈ A.

Proof. Necessity of (a) and (b) is obvious; that of (c) follows from the equation
b = bb−1a. To prove sufficiency, let a, b ∈ A. Then ab = (abb−1)(a−1ab), where the prod-
uct on the right hand side is restricted. It suffices, then, to show that a−1ab ∈ A (that
abb−1 ∈ A follows dually – observe that condition (c) is actually self dual, since the natural
partial order respects inverses). Now a−1ab ≤ b ∈ A and (a−1ab)(a−1ab)−1 = (a−1a)(bb−1)
so it remains by (c) to show that (a−1a)(bb−1) ∈ A. The product a−1a is restricted, so
a−1a ∈ A, and similarly for bb−1. Then (b) implies that the product belongs to A.

THEOREM 2.3 Let S and T be aperiodic inverse semigroups. Any L-isomorphism Φ
from S to T is induced by a unique bijection φ : S → T satisfying

1. φ restricts to a weak isomorphism from ES to ET ;

2. φ preserves L and R;
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3. if b < a in S, b 6∈ ES, then bφ ≤ (aφ)n for some integer n, and similarly for φ−1.

Conversely, any bijection φ : S → T that satisfies 1, 2 and 3 induces an L-isomorphism
from S to T .

The condition 3 can be replaced by 3’: φ induces an isomorphism of LF(S) on LF(T ).

Proof. The existence of the unique bijection φ : S → T satisfying 1 and 2 was shown
in §1. Clearly, since φ induces Φ, it induces the restriction of Φ to LF(S). Thus 3 follows
from Lemma 2.1.

To prove the converse, assume 1,2 and 3 hold. (The final statement is immediate
from Lemma 2.1.) It follows that (aφ)−1 = a−1φ for all a ∈ S. It is easily seen that
φ−1 also satisfies 1 and 2. Hence, by symmetry it suffices to show that if A ∈ L(S) then
Aφ ∈ L(T ). We apply Lemma 2.2. Clearly Aφ is closed under inverses. Since weak iso-
morphisms are precisely the bijections between semilattices that induce L-isomorphisms
between them, EAφ is a subsemilattice of ET . Let a, b ∈ A, with (aφ)−1aφ = bφ(bφ)−1,
so that aφRaφbφLbφ. Then since φ preserves L and R, a−1a = bb−1, so aRabLb and
therefore aφR(ab)φLbφ. By aperiodicity, aφbφ = (ab)φ ∈ Aφ. So Aφ is closed under
restricted products. Finally, suppose b ∈ S, a ∈ A, with bφ(bφ)−1 ∈ Aφ and bφ < aφ.
Since φ preserves R, bφ(bφ)−1 = (bb−1)φ, so bb−1 ∈ A and by 3, applied to φ−1, b ≤ an

for some integer n. But an ∈ A so, by Lemma 2.2, b ∈ A and bφ ∈ Aφ, as required.

By the observations preceding Result 1.1, the condition 2 can be replaced by 2’
{aa−1, a−1a}φ = {aφ(aφ)−1, (aφ)−1aφ} for every a ∈ S as long as uniqueness of φ is
replaced by uniqueness up to possible interchange of aφ and a−1φ for each a ∈ S. This
result then characterizes the bijections that can induce an L-isomorphism between ape-
riodic inverse semigroups.

We now turn to the nonaperiodic situation and characterize the bijections that induce
L-isomorphisms. In general, of course, an L-isomorphism between groups is not induced
by a bijection. To obtain a complete analogue to the previous theorem we shall need to
assume that, in the semigroups under consideration, every nonaperiodic D-class contains
at least two idempotents, so that an L-isomorphism Φ from S to T induces the base
bijection θ : S → T defined in §1.

It seems that little is known of the properties of θ outside the completely semisimple
situation. However, it was shown in [12, Lemma 44.5] that if S is a Brandt semigroup that
is not a group with zero, then θ induces Φ and the question was raised when this occurs
in general. We may extend the lemma to all completely semisimple inverse semigroups of
the appropriate type, without difficulty. It is known [7] that the class of such semigroups
is closed under L-isomorphisms.

LEMMA 2.4 Let S be a completely semisimple inverse semigroup in which each non-
aperiodic D-class contains at least two idempotents. If Φ is an L-isomorphism from S to
an inverse semigroup T then it is induced by the base bijection θ : S → T .
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Proof. Let a ∈ S. If a ∈ ES ∪ NS then 〈a〉Φ = 〈aφ〉 = 〈aθ〉. So suppose a ∈ He,
a 6∈ ES, e ∈ ES. Put r = re, a = rs−1 and aθ = rφ(sφ)−1 ∈ Heφ. Following the same
argument as in the lemma cited above, based on the fact that the principal factor asso-
ciated with e is a Brandt semigroup (see [12, Exercise 7b, page 126]), 〈a〉 = 〈r, s〉 ∩ He

and 〈aθ〉 = 〈rφ, sφ〉 ∩Heφ = 〈r, s〉Φ ∩HeΦ = (〈r, s〉 ∩He)Φ = 〈a〉Φ. Hence θ induces Φ.

THEOREM 2.5 Let S and T be any completely semisimple inverse semigroups. An L-
and R-preserving bijection θ : S → T induces an L-isomorphism Φ between S and T if
and only if

1. θ restricts to a weak isomorphism from ES to ET ;

2. if b < a in S, b 6∈ ES, then bθ ≤ (aθ)n for some integer n, and similarly for θ−1;

3. for each e ∈ ES, θ induces an L-isomorphism between the subgroups He and Heθ;

4. if ab is a restricted product in S and a, b ∈ NS then (i) if ab ∈ NS then (ab)θ = aθbθ
and (ii) otherwise (ab)θ and aθbθ generate the same subgroup of T .

If each nonaperiodic D-class of S and T contains at least two idempotents, then any L-
isomorphism between them is induced by a unique L- and R-preserving bijection, namely
the base bijection θ.

Proof. The last statement follows from Lemma 2.4. Otherwise, we follow the general
outline of the proof of the previous theorem. Necessity of 1 has already been noted. That
of 2 follows from the same argument as in the previous theorem. Since Φ restricts to an
L-isomorphism between He and HeφE

= Heθ, 3 is immediate. To prove 4 we shall need
to use complete semisimplicity in a similar manner to that of the proof of Lemma 2.4.

If x ∈ NS then 〈x〉∩Dx consists of the four distinct elements x, x−1, xx−1, x−1x (since
its principal factor is a Brandt semigroup). Similarly, if ab is a restricted product in S
and a, b, ab all belong to NS, then since ab ∈ Ra∩Lb, 〈a, b〉∩Da = (〈a〉∪ 〈b〉∪ 〈ab〉)∩Da.
(See [12, Exercise 7(a), page 126].) Since θ preserves L and R, the product aθbθ is also
restricted in T and aθ, bθ, aθbθ ∈ NT . Hence 〈aθ, bθ〉∩Daθ = (〈aθ〉∪ 〈bθ〉∪ 〈aθbθ〉)∩Daθ.
Since 〈a, b〉θ = 〈aθ, bθ〉, and since (ab)θ ∈ Raθ ∩ Lbθ then, in view of the description of
〈x〉 ∩Dx given above, this element belongs to 〈aθbθ〉 and is H-related to aθbθ. Applying
that same description, we obtain (ab)θ = aθbθ.

Suppose ab is a restricted product where a, b ∈ NS but ab 6∈ NS. In that case a ∈ Hb−1

and ab ∈ Hf , where f = aa−1 = b−1b. Since θ induces an L-isomorphism between
Hf and Hfθ, 〈(ab)θ〉 = 〈ab〉θ. Because the principal factor containing a is a Brandt
semigroup, 〈ab〉 = 〈a, b〉 ∩ Hf (see [12, Exercise 7(b), page 126]). Because θ induces Φ,
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(〈a, b〉∩Hf )θ = 〈aθ, bθ〉∩Hfθ. Finally, since θ preserves L andR, 〈aθ, bθ〉∩Hfθ = 〈aθbθ〉,
similarly.

To prove the converse, assume 1 – 4 hold. It is again easily seen that θ−1 also satisfies
these conditions. Hence it suffices to prove that if A ∈ L(S) then Aθ ∈ L(T ). That Aθ
satisfies (b) and (c) of Lemma 2.2 proceeds as in the proof of the previous theorem. It
therefore remains to show that it is closed under inverses and restricted products. To
show the former property, let a ∈ A. If a 6∈ NS, then (aθ)−1 ∈ 〈aθ〉 = 〈a〉θ ⊆ Aθ,
using 3. If a ∈ NS then a−1 ∈ NS and the product aa−1 is restricted. By (4)(ii),
〈aθa−1θ〉 = 〈(aa−1)θ〉 = {(aa−1)θ} = {aθ(aθ)−1}, whence since θ preserves L and R,
(aθ)−1 = a−1θ.

Now suppose aθbθ is a restricted product in Aθ. Since θ and θ−1 preserve L and R,
ab is a restricted product in A. There are various cases to consider. Suppose a, b ∈ NS.
That aθbθ ∈ Aθ is immediate from the two cases of 4. If neither a nor b belongs to
NS then since a−1a = bb−1, both lie in a subgroup He, e ∈ ES, say, and the requisite
conclusion follows from 3.

If a 6∈ NS, a ∈ He, say, and b ∈ NS then aRb and abHb, so that the product
(ab)b−1 is restricted, with ab, b−1 ∈ NS. Similarly, aθ ∈ Heθ, bθ ∈ NT and aθbθHbθ. Let
c = (aθbθ)θ−1Hb. Then the product cb−1 in S is restricted, with cb−1 ∈ He. By (4)(ii),
〈(cb−1)θ〉 = 〈cθb−1θ〉 in Heθ. Now since b ∈ NS, b−1θ = (bθ)−1, as proved above. Thus
〈cθb−1θ〉 = 〈aθbθ(bθ)−1〉 = 〈aθ〉. But from (3), 〈aθ〉 = 〈a〉θ and 〈(cb−1)θ〉 = 〈cb−1〉θ,
so 〈a〉 = 〈cb−1〉. Therefore cb−1 = an for some integer n and c = anb ∈ A. Hence
aθbθ = cθ ∈ Aθ. The case where a ∈ NS, b 6∈ NS is dual.

Similar comments to those following the previous theorem apply, regarding the con-
dition that θ be L- and R-preserving.

Remark: the second paragraph of the proof is essentially that of the corresponding
case of Lemma 4.4 below, and of the result of Ershova cited there (see [12, 44.6.3(a)]).

3 Archimedean properties

In this section we treat the appropriate hypotheses under which we shall eventually
prove that every L-isomorphism induces an isomorphism. Goberstein [4] introduced the
notion of a ‘shortly connected’ inverse semigroup and proved (Theorem 5) that any L-
isomorphism between such semigroups, with the property that the weak isomorphism φE

is actually an isomorphism, is induced by a unique isomorphism. He also introduced a
slightly stronger property, ‘shortly linked’, which is more natural and more easily verified.
(He showed in the sequel [5] that these two properties are distinct.) For that reason, we
prefer to work with generalizations of the latter property.

An inverse semigroup S is shortly linked if for any idempotent e of S and any element
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a of S such that e < aa−1, the set Fe,a = {f ∈ E〈a〉 : e < f ≤ aa−1} is finite. (Goberstein
actually introduced this property in a different form, then showed it to be equivalent
to the above in [4, Proposition 3].) Many inverse semigroups turn out to be shortly
linked in one of two ways: by virtue of the property that they contain only finitely many
idempotents above any given one; or by virtue of being group bound.

PROPOSITION 3.1 1. An inverse semigroup is shortly linked if and only if no
idempotent is strictly below infinitely many idempotents of any monogenic inverse
subsemigroup;

2. every group bound, and hence every periodic and every finite inverse semigroup, is
shortly linked;

3. every free inverse semigroup and monogenic inverse semigroup is shortly linked.

Proof. 1. Let S be an inverse semigroup and e ∈ ES, a ∈ S. Since every idempotent
of 〈a〉 is below either aa−1 or a−1a, {f ∈ E〈a〉 : e < f} = Fe,a ∪ Fe,a−1 , from which the
stated equivalence is clear.

2. A group bound inverse semigroup is characterized by the property that each of its
monogenic inverse subsemigroups has finite semilattice of idempotents.

3. By [10] every free inverse semigroup S is “finite J -above”, that is, for any x ∈ S
there are only finitely many elements y such that SxS ⊆ SyS. Hence no idempotent can
be strictly below infinitely many others. A similar argument applies to each monogenic
inverse semigroup.

An inverse semigroup S is pseudo-archimedean if no idempotent of S is strictly below
every idempotent of a free monogenic or bicyclic inverse subsemigroup. Clearly, by 1
of the proposition, every shortly linked inverse semigroup is pseudo-archimedean. If an
idempotent is below infinitely many idempotents of a bicyclic subsemigroup then it must
be below all of them. However, this is not obviously so for the free monogenic inverse
subsemigroups and we now quote an example to show that the pseudo-archimedean
property is strictly weaker than that of being shortly linked.

EXAMPLE 3.2 [3, Example 3.11]. There is an aperiodic, E-unitary, pseudo-archimedean
inverse semigroup that is not shortly linked. The semigroup is generated as an ideal by a
single nonidempotent.

We may weaken the pseudo-archimedean hypothesis still further. Let us call S faintly
archimedean if whenever an idempotent e of S is strictly below every idempotent of a
bicyclic or free monogenic inverse subsemigroup 〈a〉, then e < a. Adjoining a zero to a free
monogenic inverse semigroup yields a faintly archimedean inverse semigroup that is not
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pseudo-archimedean. (K.H. Cheong [1] called S weakly archimedean if this implication
is required to hold for all monogenic inverse subsemigroups 〈a〉. She showed that any
inverse semigroup whose lattice of convex inverse subsemigroups is lower semimodular
has this property. The term ‘archimedean’ alludes to its use in earlier work by the author
[6].)

Note that if a monogenic inverse subsemigroup 〈a〉 is of type (k,∞+) for some positive
integer k, then ak+1a−k generates its bicyclic kernel, where ak+1a−k ≤ a. Thus S is faintly
archimedean if and only if whenever e is below every idempotent of 〈a〉, where E〈a〉 is
infinite, then e < a.

While this property will be an adequate hypothesis in the aperiodic case, it needs to
be strengthened slightly to cover the general situation. Let us call S quasi-archimedean
if whenever an idempotent e is (not necessarily strictly) below every idempotent of 〈a〉,
where a ∈ NS, then e < a.

PROPOSITION 3.3 The following are equivalent for an inverse semigroup S:

1. S is quasi-archimedean;

2. if a ∈ NS, b < a and bb−1 is below every idempotent of 〈a〉, then b ∈ ES;

3. S is faintly archimedean and 〈a〉 is aperiodic for each a ∈ NS;

4. for each a ∈ NS, 〈a〉 is aperiodic and whenever b < a, bb−1 < ana−n and b−1b <
a−nan for every positive integer n, then b ∈ ES.

Proof. Throughout the proof, e denotes an idempotent of S and a an element of NS.
1 ⇒ 2. With a, b as stated, then by 1, bb−1 < a. Thus b = bb−1a = bb−1.
2 ⇒ 3. If e is strictly below each idempotent of 〈a〉 then b = ea < a and bb−1 = e. So

by 2, bb−1 = b < a. In particular, this holds whenever 〈a〉 is bicyclic or free. Now if 〈a〉
has no least idempotent then from the discussion in §1 it is aperiodic. In the alternative
case it has a group kernel with identity e, say, which is clearly below every idempotent
of 〈a〉 and so is below a. Again setting b = ea, by a similar argument to the above we
obtain b ∈ ES. But the kernel is generated by b and so is trivial, that is, 〈a〉 is aperiodic.

3⇒ 1. Suppose e is below every idempotent of 〈a〉. On the one hand, if E〈a〉 is infinite
then, by hypothesis, e < a. On the other hand, if E〈a〉 is finite, then 〈a〉 is aperiodic and
its least idempotent is an+1 = an for some positive integer n. Then e ≤ an = ana < a.

2 ⇒ 4. Under the assumption of 4, bb−1 = b(b−1b)b−1 ≤ a(a−nan)a−1 ≤ a−(n−1)an−1

for n > 1, so in fact bb−1 is below every idempotent of 〈a〉 and 2 applies. Aperiodicity
follows as in 2 ⇒ 3.

4 ⇒ 3. Suppose e is below every idempotent of 〈a〉, where 〈a〉 is bicyclic or free. Let
b = ea. Then b < a, bb−1 = e < ana−n and b−1b = a−1ea < a−1a−nana for every positive
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integer n. By 4, ea ∈ ES, that is, e = ea < a.

COROLLARY 3.4 An aperiodic inverse semigroup S is quasi-archimedean if and only
if it is faintly archimedean.

4 L-determinability

In this section we generalize the result of Goberstein, cited earlier, on aperiodic inverse
semigroups, and prove a similar result on completely semisimple nonaperiodic inverse
semigroups.

LEMMA 4.1 Let S and T be inverse semigroups and suppose φ : S → T is a bijection
that induces an isomorphism LF(S) → LF(T ), restricts to an isomorphism on ES and
satisfies {aa−1, a−1a}φ = {aφ(aφ)−1, (aφ)−1aφ} for every a ∈ S. If a ∈ S, e ∈ ES and
e < a, then eφ < aφ.

Proof. Since the conclusion is unaffected by interchanging aφ with a−1φ, we may as-
sume that φ preserves L andR. Now e < aa−1, so that since φ restricts to an isomorphism
on ES, eφ < (aa−1)φ = (aφ)(aφ)−1. Thus eφReφaφ and so if we put c = (eφaφ)φ−1,
then cRe. Hence eφaφ ∈ ET , that is, eφ < aφ. For otherwise, applying Lemma 2.1 to
φ−1 yields c ≤ ak for some nonzero integer k, so that c = eak = e, a contradiction.

LEMMA 4.2 Let S be any quasi-archimedean inverse semigroup and suppose that φ is
a bijection of S upon an inverse semigroup T that (i) restricts to an isomorphism on ES,
(ii) preserves L and R, (iii) restricts to an isomorphism on 〈a〉 for each a ∈ NS and
(iv) induces an isomorphism of LF(S) upon LF(T ). Then whenever b < a in S and
a ∈ ES ∪NS, bφ < aφ.

Proof. Since φ restricts to an isomorphism on ES, the conclusion holds if a ∈
ES, so assume a ∈ NS. If b ∈ ES then Lemma 4.1 applies. Otherwise, according to
Lemma 3.3(4), either there is a greatest positive integer n such that bb−1 < ana−n or
the (left-right) dual of that statement holds. In the latter case, a dual argument applies,
so consider the former possibility. Note that in conjunction with b < a, the stated
inequality is equivalent to b < ana−(n−1). By Lemma 2.1, bφ ≤ (ana−(n−1))kφ for some
nonzero integer k.

Suppose k = 1. Since φ restricts to an isomorphism on 〈a〉,
(ana−(n−1))φ = (aφ)n(aφ)−(n−1) ≤ aφ, yielding the desired conclusion.
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Next suppose k > 1. Then by a simple inductive argument, (ana−(n−1))k = an+k−1a−(n−1).
Hence (bb−1)φ ≤
((an+k−1a−(n−1))(an+k−1a−(n−1))−1)φ = (an+k−1a−(n+k−1))φ. Now φ is an isomorphism
on ES, so bb−1 ≤ an+k−1a−(n+k−1). Since, for k > 1, an+k−1a−(n+k−1) ≤ an+1a−(n+1),
the maximality assumption on n yields bb−1 = an+1a−(n+1). From b < a we then obtain
b = an+1a−n and so bφ = (aφ)n+1(aφ)−n ≤ aφ, as required.

Finally, suppose k < 0. Now, by similar arguments, b−1b ≤ an−k−1a−(n−k−1) ≤ ana−n

whence, since b < a, bb−1 ≤ an+1a−(n+1) once more and the concluding argument of the
preceding case applies.

4.1 Aperiodic inverse semigroups

THEOREM 4.3 Let S be any aperiodic, quasi-archimedean (equivalently, faintly archimedean)
inverse semigroup and let Φ be an L-isomorphism from S to an inverse semigroup T such
that the weak isomorphism φE : ES → ET is actually an isomorphism. Then Φ is induced
by a unique isomorphism, namely the base bijection φ defined in §1.

Proof. Let φ : S → T be as stated. According to [9, Theorem 3.1.5], if a mapping
between two inverse semigroups is order preserving, restricts to a homomorphism on the
semilattice of idempotents and preserves restricted products, then it is a homomorphism.

Let ab be a restricted product. Then since φ respects Green’s relations, aφbφ is
also such a product and the resulting element is H-related to (ab)φ, whence equal, by
aperiodicity.

Since φ induces Φ, it induces its restriction LF(S) → LF(T ). By Lemma 4.2, it is
order preserving. Hence it is an isomorphism.

In [4, Proposition 9], Goberstein constructed nonisomorphic aperiodic, completely
semisimple inverse semigroups S and T whose partial automorphism semigroups, and
hence their lattices of inverse subsemigroups, are isomorphic. It follows from his con-
struction that the induced bijection restricts to an isomorphism between their semilattices
of idempotents.

As discussed in the introduction, the restriction that the weak isomorphism φE : ES →
ET be an isomorphism is not a strong one. As remarked there, if S is E-unitary, then φE

is an isomorphism on the idempotents of any ideal generated by a nontrivial J -class. We
may apply this fact to the semigroup in Example 3.2, which is E-unitary and is generated
as an ideal by a single nonidempotent. Recalling that every pseudo-archimedean inverse
semigroup is faintly archimedean, we may apply Theorem 4.3.

Other applications, some of which were noted by Goberstein, are to new proofs of
determinability of free inverse semigroups and of simple inverse semigroups whose lattices
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of full inverse subsemigroups are modular.

4.2 Nonaperiodic, completely semisimple inverse semigroups

For Brandt semigroups with exactly two nonzero idempotents it is apparently unknown
whether the base bijection θ is always an isomorphism (see [13, Problem 7.11]). However,
Ershova proved the remarkable result [12, Theorem 44.6] (see also [13, Corollary 2.7])
that for Brandt semigroups with at least three nonzero idempotents, θ is always an
isomorphism. In a similar fashion to the proof of the above lemma, this result may
be incorporated into a result for completely semisimple inverse semigroups by noting
that since θ preserves L and R, if ab = 0 in a Brandt semigroup then aθbθ = 0 in the
image semigroup. The products that are nonzero are then precisely the restricted ones
(those for which a−1a = bb−1) and the proof that (ab)θ = aθbθ for such products in
Brandt semigroups can simply be interpreted in the appropriate completely semisimple
inverse semigroups, as follows. (Another proof may be obtained by inducing a lattice
isomorphism between the corresponding principal factors of S and T .)

LEMMA 4.4 Let S be a completely semisimple inverse semigroup with the property that
each nonaperiodic D-class contains at least three idempotents. If Φ is an L-isomorphism
from S to an inverse semigroup T then the bijection θ : S → T preserves restricted
products.

THEOREM 4.5 Let S be any completely semisimple, quasi-archimedean inverse semi-
group in which each nonaperiodic D-class contains at least three idempotents, and let Φ
be any L-isomorphism from S to an inverse semigroup T such that the weak isomorphism
φE : ES → ET is actually an isomorphism. Then Φ is induced by a unique isomorphism,
namely the base bijection θ defined in §1.

Proof. By Lemma 4.4, θ preserves restricted products and since it extends φ, it
restricts to an isomorphism on ES. According to the first paragraph of the proof of
Theorem 4.3, to prove it is an isomorphism it remains to show it is order preserving.

By Lemma 2.4, θ induces Φ and so induces an isomorphism LF(S) → LF(T ); and
by Proposition 3.3, 〈a〉 is aperiodic for each a ∈ NS, so the restriction of θ agrees with
φ thereon and is therefore an isomorphism. Hence, if b < a in S and a ∈ ES ∪NS, then
bφ < aφ, by Lemma 4.2.

To conclude the proof, suppose b < a, with a 6∈ ES ∪ NS, a ∈ Hf , f ∈ ES. Put
e = bb−1 < aa−1 = f . Since Da is nonaperiodic, Rf contains an element r of NS

and a = rr−1a = r(a−1r)−1, where a−1r ∈ Hr ⊂ NS (similarly to the definition
of θ in §1). Then b = eb = efb = err−1b = (er)(b−1r)−1, where this last prod-
uct is easily verified to be restricted. According to the first sentence of the proof,
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bθ = (er)θ(b−1r)−1θ = (er)θ((b−1r)θ)−1. But er < r ∈ NS and b−1r < a−1r ∈ NS,
so applying the previous paragraph we obtain (er)θ < rθ and (b−1r)θ < (a−1r)θ, whence
((b−1r)θ)−1 < ((a−1r)θ)−1. Hence bθ < rθ((a−1r)θ)−1 = aθ (reversing the previous argu-
ment), as required.

We now give an example to show that the quasi-archimedean hypothesis is necessary
for the above theorem to hold. We first provide a general construction of certain L-
isomorphic semigroups.

PROPOSITION 4.6 Let B be an inverse semigroup and A an inverse semigroup with
zero. Let S, S ′ be retract extensions of B by A, via partial homomorphisms ψ, ψ′ that
satisfy 〈aψ〉 = 〈aψ′〉 for all a ∈ A∗. Then the identity map I : L(S) → L(S ′) is an
isomorphism.

Proof. Let U ∈ L(S). Let U ′ denote the set U , considered as an inverse subsemigroup
of S ′. In both S and S ′, A∗ and B are closed under the inverse operation and under
restricted products, since each is a union of D-classes. By hypothesis, ψ and ψ′ agree on
the idempotents of A∗, so EU ′ ∼= EU . Finally, let u, v ∈ S ′, with vv−1, u ∈ U ′. If both u, v
belong to either B or A∗ then since the operations on U,U ′ coincide there, v ∈ U ′. The
remaining case is where v ∈ B and u ∈ A∗. Now v < u in S ′ if and only if v ≤ uψ′ in B.
Since 〈uψ′〉 = 〈uψ〉, uψ′ ≤ (uψ)n for some (without loss of generality) nonzero integer n.
Now if un ∈ A∗ then (uψ)n = unψ; if not, (uψ)n = un. In either event, v ≤ un ∈ U in S
and so u ∈ U in S, that is, u ∈ U ′ in S ′. By Lemma 2.2, U ′ ∈ L(S ′).

By symmetry, this map yields an order isomorphism between L(S) and L(S ′).

Now let A = 〈a : a5 = a2〉 and let B be the Brandt semigroup M0(X,G,X, I),
where G = 〈g : g3 = 1〉 and X = {1, 2, 3} (see [11] for this construction). Mapping a
to g induces a partial homomorphism ψ : A∗ → G; a partial homomorphism ψ′ may be
defined similarly by mapping a to g2. Here 〈aψ〉 = G = 〈aψ′〉. Since G is isomorphic to
the maximal subgroup H(1,1,1) of B, we may regard ψ and ψ′ as mapping into B. The
hypotheses of the proposition having been met, the identity map is an L-isomorphism
between the two semigroups S, S ′ defined there. Since the induced partial bijection φ is
just the identity map it follows from the construction of θ (and the fact that the copies of
B in S and in S ′ are isomorphic, by construction) that θ is also the identity map. However
the identity map between S and S ′ is not an isomorphism, since a2 = (aψ)2 = g2 in S
whereas a2 = (aψ′)2 = g4 = g in S ′. As noted above, if Φ is induced by any isomorphism,
that mapping must be θ. Hence we have exhibited the following.

EXAMPLE 4.7 There exist two finite inverse semigroups, in each of which every non-
aperiodic D-class possesses at least three idempotents, and an L-isomorphism between
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them that induces an isomorphism φE between their semilattices of idempotents and is
induced by a bijection (namely θ) that preserves restricted products, but which is not in-
duced by any isomorphism between the semigroups themselves. (In particular, the base
bijection θ is not an isomorphism).
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