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Abstract

A lattice isomorphism between inverse semigroups S and T is an isomorphism between their
lattices of inverse subsemigroups. When S is aperiodic, it has long been known that a bijection
is induced between S and T . Various authors have introduced successively weaker ‘archimedean’
hypotheses under which this bijection is necessarily an isomorphism, naturally inducing the original
lattice isomorphism. Since lattice-isomorphic groups need not have the same cardinality, extending
these techniques to the non-aperiodic case requires some means of tying the subgroups to the rest
of the semigroup. Ershova showed that if S has no nontrivial isolated subgroups (subgroups that
form an entire D-class) then again a bijection exists between S and T . Recently, this technique has
been successfully exploited, by Goberstein for fundamental inverse semigroups and by the author
for completely semisimple inverse semigroups, under two different ‘archimedean’ hypotheses. In
this paper, we derive further properties of Ershova’s bijection(s) and formulate a ‘quasi-connected’
hypothesis that enables us to derive both Goberstein’s and the author’s earlier results as corollaries.
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This paper is a sequel to the author’s paper [11] and, at the same time, an extension of a recent
paper by Goberstein [5], on the extent to which an inverse semigroup S is determined by its lattice L(S)
of inverse subsemigroups: given an L-isomorphism, that is, an isomorphism Φ : L(S) → L(T ) for some
inverse semigroup T , how are S and T related? For surveys on this topic, see [10] and [14]. It is easily
seen that since Φ restricts to an L-isomorphism between their respective semilattices of idempotents,
ES and ET , it induces a bijection φE between them. Continuing the context of the cited papers, we
focus on the situation where φE is an isomorphism, which occurs in a surprising number of contexts, for
example (see [8]) when S is simple, when S is E-unitary with no trivial J -classes or, except in a singular
case, when Φ is induced by an isomorphism between the partial automorphism semigroups of S and T .

It has long been known that φE extends to a bijection φ : ES ∪NS → ET ∪NT , where NS denotes
the set of elements that belong to no subgroup of S. This is termed the “partial base bijection” in [14].
In the aperiodic (or “combinatorial”) case where, by definition, all subgroups are trivial, φ is then a
bijection between S and T . In turn, φ induces Φ in the obvious way. It was shown by Ershova (see [14])
that as long as S has no nontrivial isolated subgroups, then the partial bijection φ can be extended to
a “base bijection”, again denoted φ, between S and T . A priori, φ may extend non-uniquely.

In this paper, we study the properties of the partial base bijection (in §1) and of base bijections (§2)
under a finiteness hypothesis termed quasi-connectedness, to be defined shortly. We thereby show that
under this hypothesis (together with the hypothesis on φE and that on subgroups), if S either (a) is
fundamental or (b) is completely semisimple with at least three idempotents in each D-class, any partial
base bijection, as above, is necessarily an isomorphism. We then prove that the “quasi-archimedean”
condition considered by the author in [11] and the “tightly connected” condition considered by Goberstein
in [5] each implies quasi-connectedness, thereby deducing a main result of each of the cited papers.
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The property of quasi-connectedness is defined in two stages. Whilst somewhat technical, we will
show in the last two sections of this paper how it relates to various finiteness conditions that have previ-
ously been developed in the context of lattice isomorphisms. As numerous examples have demonstrated,
without some finiteness condition there may be insufficient linkage between subgroups within D-classes,
or between the D-classes themselves, to ensure compatibility of the definition of φ between them.

Definition. Let S be an inverse semigroup. If a, b ∈ S with b < a then bb−1 < aa−1 and b−1b < a−1a.
We shall say that b is quasi-covered by a if either bb−1 6< a2a−2 or b−1b 6< a−2a2. Observe that, of
necessity, in this event a ∈ NS (for otherwise aa−1 = a2a−2 and dually).

Call S quasi-connected if (i) ES ∪NS is an order ideal of S (under the natural partial order) and (ii)
whenever a, b ∈ NS with b < a then there is a sequence b = b0 < b1 < · · · < bn = a in S such that bk−1

is quasi-covered by bk, for each k = 1, . . . , n.

We remarked earlier that barring nontrivial isolated subgroups allows us to tie subgroups to the
remainder of the semigroup (and to define the base bijections). The existence of nontrivial isolated
subgroups does not preclude positive outcomes, however. In [8] it was shown that the free product of
two groups, in the variety of inverse semigroups, is determined by its lattice of inverse subsemigroups,
despite the isolation of the original groups within the free product. (In fact, [9], any non-trivial free
product of inverse semigroups is determined by its lattice of inverse subsemigroups.) Another, simpler,
result [2, p.408], [10, Theorem 5.4] is that any Munn semigroup TE is lattice-determined whenever the
semilattice E has the property that each of its principal ideals is finite.

We conclude these preliminaries with some formal definitions and a reminder of some basic tools that
will be used in the sequel.

The lattice L(S) of inverse subsemigroups of an inverse semigroup S has as its zero the empty inverse
subsemigroup. Note that for a group G, the empty inverse subsemigroup must be adjoined to obtain
L(G). If U, V ∈ L(S), their join is denoted U ∨ V and is the same as their join as subsemigroups. If
A ⊆ S, we denote by 〈A〉 the inverse subsemigroup that it generates.

The idempotents of an inverse semigroup S form a semilattice, denoted ES . The natural partial order
on S is defined by a ≤ b if a = aa−1b; various useful equivalent properties may be found in [13], along
with such basic semigroup concepts as Green’s relations, ideals and principal factors. The notation a||b
means that a and b are incomparable with respect to that order. A subset A of a S is an order ideal if
a ∈ A, b ∈ S, b < a imply b ∈ A.

The semigroup S is aperiodic, or combinatorial , if all of its subgroups are trivial; it is fundamental
if it possesses no nontrivial idempotent-separating congruences (so that, in particular, aperiodic inverse
semigroups are fundamental); S is completely semisimple if each principal factor is completely 0-simple
or is a group (equivalently, S contains no bicyclic subsemigroup – see below for the definition of the
latter); S is E-unitary if whenever a ≥ e ∈ ES then a ∈ ES .

Let Φ : L(S) → L(T ) be an isomorphism. Since ESΦ = ET , Φ restricts to an isomorphism L(ES) →
L(ET ), which induces a bijection φE : E → F by the rule 〈eφE〉 = 〈e〉Φ, e ∈ E. The bijection φE is
characterized by the weak isomorphism property: if e, f ∈ E then e||f if and only if eφE ||fφE , in which
case (ef)φE = eφEfφE .

Note that the class of groups is closed under L-isomorphisms, since groups are characterized among
inverse semigroups by the property that their semilattices of idempotents are trivial. Hence if e ∈ ES

then Φ restricts to an L-isomorphism between the maximal subgroups He and HeφE
. In particular, if S

is aperiodic, so is T .
Finally, we briefly review properties of monogenic inverse semigroups. According to [13, Theorem

IX.3.11], each such semigroup is defined by exactly one of the following relations, where k, l are positive
integers: (i) ak = a−1ak+1; (ii) aka−1 = a−1ak; (iii) ak = ak+l; (iv) a = a. Those semigroups determined
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by (i) possess a bicyclic kernel (least ideal); those determined by (ii) have an infinite cyclic group kernel;
those determined by (iii) have a finite cyclic group kernel; that determined by (iv) is free. In the first
three cases, if k = 1 then the semigroup itself is bicyclic, infinite cyclic or finite cyclic, respectively.
If k ≥ 2, then it is an extension of its kernel by the quotient of the free monogenic inverse semigroup
modulo the ideal generated by ak (the quotient then being in class (iii), with trivial kernel).

1 The partial base bijection

In this section we review the definition and basic properties of this map and prove the key technical
results needed in the proofs of our main theorems.

As noted earlier, NS denotes the set of elements of S that do not belong to a subgroup. For
each a ∈ NS , by [8] there is a unique element b of T such that 〈a〉Φ = 〈b〉, (aa−1)φE = bb−1 and
(a−1a)φE = b−1b. Setting b = aφN yields a bijection φN : NS → NT . Let φ = φE ∪ φN . We follow [14]
in terming this the ‘base partial bijection’. If S is aperiodic, φ becomes the ‘base bijection’ of S upon
T , and then induces Φ.

RESULT 1.1 Let Φ be an L-isomorphism between inverse semigroups S and T . There is a unique
bijection φ : ES∪NS → ET∪NT such that φ restricts to a weak isomorphism from ES to ET , 〈a〉Φ = 〈aφ〉
for all a ∈ ES ∪NS, and φ is L- and R-preserving.

Properties of lattice isomorphisms of monogenic inverse semigroups are summarized in [14, §42]. If
S is such a semigroup and Φ a lattice isomorphism of S upon an inverse semigroup T , then for all
a, b ∈ ES ∪NS such that ab ∈ ES ∪NS , then (ab)φ = aφbφ. In particular φE is always an isomorphism;
and φ itself is an isomorphism if S is aperiodic.

Throughout the rest of this section, the notation is that of Result 1.1. Assume that φ restricts to an
isomorphism on ES . We begin with a quite general tool.

PROPOSITION 1.2 Suppose a ∈ NS , e ∈ ES and e < a. Then eφ < aφ.

Proof. Since e < a, ea = ae = a, whence a−1e = ea−1 = a. Hence we = ew = e for all w ∈ 〈a〉, so
that 〈e, a〉 = 〈a〉 ∪ {e}. Now if 〈a〉 contains e, it must be aperiodic, since e is its zero. Then, as noted in
Section 1, φ is an isomorphism on 〈a〉 and so eφ < aφ.

Otherwise 〈e, a〉 is the disjoint union of 〈a〉 and {e}. In that event, 〈eφ, aφ〉 is the disjoint union of
〈aφ〉 and {eφ}. Suppose eφaφ ∈ 〈aφ〉. Then eφ ≥ (eφ)(aφ)(aφ)−1 = (eφaφ)(eφaφ)−1 ∈ E〈aφ〉.

But from the first two sentences of the proof, e ≤ f for every f ∈ E〈a〉 and then, by hypothesis,
eφ ≤ fφ for all such f . Since eφ was assumed not to belong to 〈aφ〉, a contradiction is obtained. �

The second key technical tool is the following, which extends [5, Lemma 2.4] and draws on techniques
in the proofs of that lemma and of [11, Lemma 4.2] for its proof.

LEMMA 1.3 If a, b ∈ NS, b < a and b is quasi-covered by a, then bφ < aφ.

Proof. To prove the first statement, we may assume that bb−1 6< a2a−2, the other case being
dual. Note first that if bb−1 = a2a−2 then b = (a2a−2)a ∈ 〈a〉 and since b ∈ NS , it does not lie in
the kernel of 〈a〉, if one exists. Thus by the remarks on monogenic inverse semigroups in Section 1,
bφ = (a2a−2a)φ = (aφ)2(aφ)−2(aφ) < aφ. So we may assume from now on that bb−1 6≤ a2a−2.

Now by Result 1.1 〈aφ〉 = 〈a〉Φ and 〈bφ〉 = 〈b〉Φ. Since b = (bb−1)a ∈ ES ∨ 〈a〉, bφ ∈ 〈b〉Φ ⊆
ESΦ ∨ 〈a〉Φ = ET ∨ 〈aφ〉. Applying [7, Lemma 2.1], bφ = h(aφ)n for some nonzero integer n and
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some h ∈ ET . Thus bφ ≤ (aφ)n and so in fact bφ = (bφ)(bφ)−1(aφ)n. Note that since φ preserves R,
(bφ)(bφ)−1 = (bb−1)φ. Thus (bb−1)φ ≤ (aφ)n(aφ)−n.

Suppose n > 1. Then (aφ)n(aφ)−n ≤ (aφ)2(aφ)−2 = (a2a−2)φ, as above. Since φE is an isomor-
phism, bb−1 ≤ a2a−2, a contradiction.

Next suppose n < 0. Then (bφ)−1(bφ) = (aφ)−n(bb−1)φ(aφ)n ≤ (aφ)−n(aφ)n ≤ (aφ)(aφ)−1, so that
(b−1b)φ < (aa−1)φ and b−1b < aa−1. Since b < a and the partial order is compatible with multiplication
and inversion, bb−1 = b(b−1b)b−1 ≤ a2a−2, once again a contradiction.

Thus n = 1 and bφ < aφ. �

COROLLARY 1.4 If S is quasi-connected then bφ < aφ whenever b < a and a ∈ ES ∪NS.

Proof. According to Proposition 1.2 the conclusion holds when b ∈ ES . Since ES ∪NS is an order
ideal, the remaining case to consider is when b ∈ NS . Then there is a sequence b = b0 < b1 < · · · < bn = a
such that bk−1 ∈ NS and bk−1 is quasi-covered by bk, for each k = 1, . . . , n. Iteration of the previous
lemma yields the requisite inequality. �

2 Base bijections

In the aperiodic case, the partial base bijection φ : ES ∪NS → ET ∪NT is actually a bijection. We may
extend φ to nontrivial non-isolated subgroups as follows. For each idempotent e in such a subgroup of
S, De contains more than one idempotent. Choose and fix an element re of NS ∩Re. For a ∈ He define
aφ = (reφ)(sφ)−1, where s = a−1re is the unique element of Hre

such that a = res
−1.

Thus in general φ may be extended to any individual D-class that is not simply a group. Then
(Ershova: see [14, §43.7]) as long as S contains no nontrivial isolated subgroups, this rule defines a base
bijection φ from S to T . Observe that, a priori , there is no reason that φ should be uniquely defined,
since the elements re may be chosen arbitrarily. The use of the term “the base bijection” in the literature
is therefore misleading. Note that in [14] and [11], φ was denoted θ; in [5] it was denoted φ̂.

RESULT 2.1 [14, §43.7] Let Φ be an L-isomorphism between inverse semigroups S and T , where S
(and therefore T ) has no nontrivial isolated subgroups. Any base bijection φ : S → T , as just defined,
extends the partial base bijection φ : ES ∪ NS → ET ∪ NT and thereby retains the properties exhibited
in Result 1.1; in particular, it preserves L and R. If Φ is induced by an isomorphism κ : S → T , then
κ = φ (and so in that case the base bijection is uniquely defined).

It is not known (see [14, §43.7]) whether the base bijection φ always induces Φ, even should it be an
isomorphism. It is known [14, 44.5] that φ induces Φ in the case of Brandt semigroups (that are not
groups with adjoined zero).

In order to extend the properties of the partial base bijection found in the previous section, in
particular Corollary 1.4, we state two results that are extracted from deep within key proofs of the main
theorems that we are generalizing in this paper. We state them in the greatest generality we can, for
possible future use.

Prior to the first of these, we need to link the outcome of Corollary 1.4 to the hypothesis relevant to
fundamental inverse semigroups in §3.

RESULT 2.2 [5, Lemma 1.2] Let S and T be inverse semigroups and φ : S → T be a bijection that
preserves L and R and restricts to an isomorphism on ES. If b < a implies bφ < aφ for all a ∈ NS,
then (a−1ea)φ = (aφ)−1(eφ)(aφ) for all a ∈ NS , e ∈ ES.

4



The connection between the properties in this result is more clearly seen if one verifies that (1) the
assumption is equivalent to the statement that for all a ∈ NS , (ea)φ = (eφ)(aφ) for all e < aa−1; and
(2) the conclusion is equivalent to the statement that for all a ∈ NS , (ea)φH(eφ)(aφ) for all e < aa−1.

The next result was the essential ingredient in the proof of the theorem of Goberstein [5, Theorem
2.5] that we will generalize in §3. We include Goberstein’s proof so that it is clear what hypotheses are
required in its derivation.

RESULT 2.3 Let S be an inverse semigroup with no nontrivial isolated subgroups, and let Φ be a
lattice isomorphism of S upon T , inducing a base bijection φ : S → T . Suppose that φ restricts to an
isomorphism on ES. If the equation (a−1ea)φ = (aφ)−1(eφ)(aφ) holds for all a ∈ NS , e ∈ ES, then it
holds for all a ∈ S, e ∈ ES.

Proof. By hypothesis, it remains to treat the situation in which a lies in a subgroup. Put
f = aa−1 = a−1a. Then aφ = (rfφ)(sφ)−1, where rf ∈ NS ∩ Rf and a = rfs−1. Thus (a−1ea)φ =
(s(rf

−1erf )s−1)φ = (sφ)(rf
−1erf )φ(sφ)−1, applying the hypothesis to s−1 ∈ NS and rf

−1erf ∈ ES ;
and (sφ)(rf

−1erf )φ(sφ)−1 = (sφ)((rfφ)−1(eφ)(rfφ))(sφ)−1 = (aφ)−1(eφ)(aφ), applying it to rf ∈ NS

and e ∈ ES . �

Next we consider an analogous result relevant to completely semisimple inverse semigroups, the
essence of which is embedded in the proof of [11, Theorem 4.5]. This result uses only the properties of
base bijections, not the definition. Again, we include a proof in order to clarify the precise hypotheses
required in its derivation.

A product ab (sometimes denoted a · b for clarity) is restricted if a−1a = bb−1; in that event ab ∈
Ra ∩ Lb. The relevance of this property owes much to the fact (e.g. [12, Theorem 3.1.5]) that if a
mapping between two inverse semigroups is order preserving, restricts to a homomorphism on ES and
preserves restricted products, then it is a homomorphism.

LEMMA 2.4 Let S be an inverse semigroup with no nontrivial isolated subgroups and suppose φ : S →
T is a mapping of inverse semigroups that restricts to a homomorphism on ES, preserves restricted
products and satisfies bφ ≤ aφ whenever a, b ∈ S, b < a and a ∈ ES ∪NS. Then φ is order preserving
and hence a homomorphism.

Proof. It remains to verify that bφ ≤ aφ whenever b < a and a ∈ Hf , say, f ∈ ES . By hypothesis,
there exists an idempotent g, say, in Da, distinct from f . If r ∈ Rf ∩Lg, then a = rs, where s = r−1a ∈
Lf ∩Rg and the product is restricted.

Now put e = bb−1, d = b−1b: then since b < a, b = ea = ad. Thus b = ebd = ead = (er)(sd), where
er ∈ Re and sd ∈ Ld. Also, (rs)ds−1r−1 = ada−1 = (ad)(ad)−1 = e = fef = (rr−1)err−1 and then,
since r−1rs = s, conjugation by r yields sds−1 = r−1er, so the product er ·sd is restricted. Applying the
hypothesis that φ preserves restricted products, bφ = (er)φ(sd)φ. Further, er < r ∈ NS , so (er)φ ≤ rφ;
similarly (sd)φ ≤ sφ. Hence bφ ≤ rφsφ = aφ, once again applying the hypothesis on restricted products.
�

Although the material in the remainder of this section does not find direct use in the sequel, in
light of the previous lemma it is appropriate to include at this point. Ershova (see [14, 44.6]) proved
that in the case of Brandt semigroups with at least three nonzero idempotents, any base bijection φ is
an isomorphism. We shall rederive that theorem below as a consequence of a more general analysis of
properties of φ. Our results will apply, for instance, to simple inverse semigroups that are not 0-simple.

In the following, once more Φ is a lattice isomorphism between inverse semigroups S and T , inducing
both the partial base bijection φ and its extension to all D-classes that are not just groups.
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Let us call a restricted product super-restricted if none of a, b, ab lies in a subgroup. We show that
whenever a D-class contains more than two idempotents, to prove a base bijection φ preserves restricted
products on D it suffices to show only that φ preserves super-restricted products on D. Note that this
reduces the problem to one involving the partial base bijection. Along the way, we also show that φ is
uniquely defined in this situation and that that property alone has useful consequences.

LEMMA 2.5 Suppose the D-class D contains at least three idempotents and φ preserves super-restricted
products on D. Then φ is uniquely defined on D, that is, for each idempotent e in D, the definition of
φ on He is independent of the choice of re.

Proof. Let f, g be distinct idempotents of D, different from e. Let re ∈ Re∩Lf , se ∈ Re∩Lg. Then
for any a ∈ He, a = ret

−1 = seu
−1, where t = a−1re ∈ Re ∩ Lf and u = a−1se ∈ Re ∩ Lg. It follows

that se = ret
−1u.

Using re, we may define aφ1 = (reφ)(tφ)−1; using se, we may define aφ2 = (seφ)(uφ)−1. We will
show that aφ1 = aφ2. Since the choices of re and se were arbitrary within their H-classes, this also
proves that the definition of aφ1 is independent of the choice of re.

Now t−1u ∈ Rf∩Lg, so the product t−1 ·u is super-restricted and (t−1u)φ = (tφ)−1uφ, by hypothesis.
Likewise, the product re · t−1u is super-restricted, the result lying in Re ∩ Lg, so seφ = reφ(t−1u)φ =
reφ(tφ)−1uφ = aφ1uφ and aφ2 = seφ(uφ)−1 = aφ1uφ(uφ)−1 = aφ1(uu−1)φ = aφ1eφ = aφ1.

LEMMA 2.6 For any D-class with at least two idempotents, if φ is known to be uniquely defined on
D, then it preserves all restricted products a · b on D that are not super-restricted.

Hence if D contains at least three idempotents, then if φ preserves all super-restricted products on
D, it preserves all restricted products on D.

Proof. There are essentially three cases to consider. Each follows easily by making a judicious choice
of “re” in the definition of φ on He. Let a · b be a restricted product in D.

(I) Both a, b ∈ NS but ab 6∈ NS .
Say a ∈ Re ∩ Lf , so b ∈ Rf ∩ Le and ab ∈ He. Now by hypothesis, we may set re = a in order to

define φ on He. Then in the definition of (ab)φ, s = b−1, whence (ab)φ = (aφ)(b−1φ)−1 = aφbφ.
(II) Exactly one of a, b lies in NS (whence necessarily ab ∈ NS).
We may suppose that a ∈ He and b ∈ Re ∩ Lf , say, f 6= e, so that ab ∈ Hb. The other case is

dual. But now the product (ab) · b−1 falls under case (I), since (ab)b−1 = a, so aφ = (ab)φ(bφ)−1 and
aφbφ = (ab)φ.

(III) Neither a nor b lies in NS (whence necessarily ab 6∈ NS).
We may suppose that a, b, ab ∈ He. Let f be an idempotent of D distinct from e and choose

re ∈ Re ∩ Lf . Then a = res
−1, for some s ∈ Re ∩ Lf , and so ab = reu

−1, where u = b−1s ∈ Re ∩ Lf .
Hence (ab)φ = (reφ)((b−1s)φ)−1 = (reφ)(s−1b)φ (since φ preserves inverses on NS). But the product
s−1 · b falls under case (II) and so (s−1b)φ = (sφ)−1bφ and (ab)φ = aφbφ, using the definition of aφ.

COROLLARY 2.7 [14, 44.6] For any Brandt semigroup with more than two nonzero idempotents, the
base bijection φ is an isomorphism (and so uniquely defined).

Proof. According to the above, only preservation of super-restricted products a · b remains to be
verified. But for such a, b, it is easily seen that 〈a, b〉 ∩Ra ∩ Lb = {ab} (or see the reference in [14]) and
similarly for the image under Φ.
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For Brandt semigroups with exactly two nonzero idempotents it is apparently unknown whether this
remains true (see [15, Problem 7.11]). The above results are relevant to any simple inverse semigroup
that is not a group. However lattice determinability for such semigroups is little understood outside the
fundamental case.

3 Fundamental inverse semigroups and the hypotheses of Gob-
erstein

Fundamental inverse semigroups were defined in the introduction. They provide a way of tying isolated
subgroups into the larger structure of the semigroup. It is well known (see [13], Theorem V.3.2 and
formula (V.3.3)) that an inverse semigroup S is fundamental if and only if for every x, y ∈ S, whenever
x−1ex = y−1ey for all e ∈ ES , then x = y.

In our context, the key to the usefulness of fundamentality is Goberstein’s general lemma, adapted
in [5] from [3, Lemma 2.1].

RESULT 3.1 [5, Result 1.1] Let S and T be inverse semigroups and φ : S → T a bijection that restricts
to an isomorphism on ES. If either S or T is fundamental, then φ is an isomorphism if and only if
(a−1ea)φ = (aφ)−1(eφ)(aφ) for all a ∈ S, e ∈ ES.

Similarly to the remark in the previous section, the second of the equivalent statements is itself
equivalent to the statement that for all a ∈ S, (ea)φH(eφ)(aφ), for all e < aa−1.

THEOREM 3.2 Let S be a fundamental inverse semigroup with no nontrivial isolated subgroups, and
Φ : L(S) → L(T ) a lattice isomorphism for some inverse semigroup T , inducing the base bijection
φ : S → T . Suppose that S is quasi-connected and φE is an isomorphism. Then φ is an isomorphism.

Proof. This is now immediate from Corollary 1.4, Result 2.2, Result 2.3 and Result 3.1. �

As remarked in [5], in the aperiodic or completely semisimple case φ actually induces Φ and is the
unique isomorphism to do so.

In the remainder of this section we examine two hypotheses considered by Goberstein in earlier papers
and show that tight connectedness, the main hypothesis in [5], implies quasi-connectedness. We thereby
deduce as a corollary [5, Theorem 2.5].

Goberstein introduced the following notion in [2]. Let S be an inverse semigroup. If a ∈ S, e ∈
ES , e < aa−1 and there is no f ∈ E〈a〉 such that e < f < aa−1, we say that e is a-covered by aa−1,
written e ≺a aa−1. If e < aa−1 and there is a sequence of idempotents e = e0 < e1 < · · · < en = aa−1

for which ek−1 is eka-covered by ek for k = 1, . . . , n, then (e0, e1, . . . , en) is called a short bypass from e
to aa−1. If such a short bypass exists for every such e and a, then S is said to be shortly connected .

LEMMA 3.3 Let S be an inverse semigroup and suppose a, b ∈ S, b < a, a ∈ NS. If bb−1 is a-covered
by aa−1, then b is quasi-covered by a.

Proof. Suppose both bb−1 < a2a−2 and b−1b < a−2a2 hold. Since a2a−2 ≤ aa−1, then the a-covering
property implies a2a−2 = aa−1, from which it follows that aa−1 ≥ a−1a. In fact, the inequality is strict,
since a ∈ NS .

From b−1b < a−2a2 we obtain bb−1 = b(b−1b)b−1 ≤ b(a−2a2)b−1. Since b < a and the partial order
is compatible with multiplication and inversion, b(a−2a2)b−1 ≤ a(a−2a2)a−1 = (aa−1)(a−1a) = a−1a <
aa−1, using the final inequality and remark of the previous paragraph. By hypothesis, bb−1 = a−1a,
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whence b = bb−1a = a−1a2. However, in that event b−1b = a−2a2, contradicting the strictness of the
original inequality. �

COROLLARY 3.4 If S is a shortly connected inverse semigroup in which ES ∪NS is an order ideal,
then S is quasi-connected.

Proof. Suppose S is shortly connected and a, b ∈ NS , b < a. Let e = bb−1, so that e < aa−1. Let
(e0, e1, . . . , en) be a short bypass from e to aa−1 and for k = 0, . . . , n put bk = eka, so that bkb−1

k = ek

and b = b0 < b1 < . . . < bn = a. Since ES ∪ NS is an order ideal and b 6∈ ES , each bk ∈ NS . Now
repeated application of the previous lemma yields the desired conclusion. �

In [5], Goberstein strengthened short connectedness as follows. If e < aa−1 then e is tightly a-covered
by aa−1 if e ≺a aa−1 and both a and ea belong to ES ∪ NS . The semigroup S is said to be tightly
connected if for every e ∈ ES and every a ∈ ES ∪NS such that e < aa−1, there is a tight bypass from e
to aa−1, namely a short bypass for which (in the above notation) ek−1 is tightly eka-covered by ek for
k = 1, . . . , n.

Clearly, for aperiodic inverse semigroups, the two definitions coincide. The precise relationship
between them is given by the following.

PROPOSITION 3.5 An inverse semigroup S is tightly connected if and only if S is shortly connected
and ES∪NS is an order ideal. It follows from Corollary 3.4 that every tightly connected inverse semigroup
is quasi-connected.

Proof. Suppose S is tightly connected. We first show that ES∪NS is an order ideal. Let a ∈ ES∪NS

and suppose b ∈ S, b < a. Clearly, if a ∈ ES then b ∈ ES . So assume a ∈ NS . Then e = bb−1 < aa−1

and by hypothesis there is a tight bypass e = e0 < e1 < · · · < en = aa−1 with, by definition, each
eka ∈ ES ∪NS . Hence b = e0a has this property, as required.

Now to show S is shortly connected, take arbitrary a ∈ S, e ∈ ES with e < aa−1. If a belongs to
a subgroup of S then E〈a〉 = {aa−1}, whence e < aa−1 is a short bypass from e to aa−1. Otherwise
a ∈ ES ∪NS and, by definition there is once again a short bypass from e to aa−1.

To prove the converse, suppose a ∈ ES ∪ NS , e ∈ ES , e < aa−1. Then there is a short bypass
e = e0 < e1 · · · < en = aa−1. Now for each k, eka < a so, by hypothesis eka ∈ ES ∪ NS , that is, the
bypass is in fact tight. �

As a consequence of the final statement of this proposition, Theorem 3.2 specializes to [5, Theorem
2.5].

Quasi-connectedness is prima facie a weaker property than tight connectedness in two ways. First,
the latter property requires the existence of a short bypass from any idempotent e strictly less than
aa−1, whereas the former property only requires (ii) of its definition to hold when ea ∈ NS (not when
ea ∈ ES). For instance, adjoining a zero to a free monogenic inverse semigroup 〈a〉 yields an inverse
semigroup that is quasi-connected (since 〈a〉 is so, as we shall see in the next section) but is not tightly
(equivalently shortly) connected, since there is no short bypass from 0 to aa−1.

The next proposition illustrates a second way in which quasi-connectedness is weaker than tight
connectedness. Recall that an inverse semigroup is E-unitary if whenever e ∈ ES , a ∈ S and e < a then
a ∈ ES . Under this hypothesis, the situation in the previous paragraph cannot occur.

PROPOSITION 3.6 There is an E-unitary, aperiodic inverse semigroup that is quasi-connected but
not shortly (equivalently tightly) connected, and in which the converse of Lemma 3.3 fails.
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Proof. Let A = 〈a〉 be a free monogenic inverse semigroup and B = 〈b〉 be a bicyclic semigroup,
with bb−1 > b−1b. Let S be the retract ideal extension of B by A defined by the homomorphism A → B
that is induced by a → b.

Multiplication of an element of B by an element of A is accomplished by substituting b for a in
any expression for the element of A in terms of its generator. Hence an idempotent e of B is below an
idempotent f of A if and only if e is below (not necessarily strictly) the idempotent of B corresponding
to f . Since bb−1 = bnb−n for every n > 1 and bb−1 > b−1b > b−2b2 > · · ·, the following statements are
easily verified.

The elements a, b belong to NS and satisfy b < a, b−1b < a−1a but b−1b 6< a−2a2, so b is quasi-covered
by a; however bb−1 < aa−1 and bb−1 is not a-covered by aa−1 since bb−1 is below each of the distinct
idempotents ana−n, n > 1, of 〈a〉. Hence the converse of Lemma 3.3 fails.

In fact since bb−1 6< a−1a, the only idempotents between bb−1 and aa−1 are those listed above.
Similarly, then, bb−1 is not (ana−n)a-covered by ana−n for any n > 1. Hence there is no short bypass
from bb−1 to aa−1 and so S fails to be shortly connected.

That S is quasi-connected will follow from the results of the next section (see the remarks following
Proposition 4.4). �

Finally, we briefly mention a strengthening of the shortly connected property considered by Gober-
stein in [2], namely that of being “shortly linked”, under which whenever a ∈ S, e ∈ ES and e < aa−1,
there is a short bypass from e to aa−1 in which every term but e belongs to 〈a〉 itself. In light of the
lemma above, we might define the term “tightly linked” by the conjunction of this property with the
property that ES ∪NS be an order ideal. In [4], Goberstein gave examples of shortly connected inverse
semigroups that are not shortly linked.

4 Completely semisimple inverse semigroups and earlier hy-
potheses of the author

Ershova’s Result 2.7 was used by the author to prove the following.

RESULT 4.1 [11, Lemma 4.4] Let S be a completely semisimple inverse semigroup with the property
that each nonaperiodic D-class contains at least three idempotents. If Φ is a lattice isomorphism from S
to an inverse semigroup T then any base bijection φ preserves restricted products, that is, (ab)φ = aφbφ
for any restricted product a · b.

THEOREM 4.2 Let S be a completely semisimple inverse semigroup in which each nonaperiodic D-
class contains at least three idempotents, and Φ : L(S) → L(T ) a lattice isomorphism for some inverse
semigroup T , inducing the base bijection φ. Suppose that S is quasi-connected and φE is an isomorphism.
Then Φ is induced by a unique isomorphism, namely the base bijection φ.

Proof. The hypotheses in the first sentence of the statement imply that φ induces Φ, by [11,
Lemma 2.4], and that φ preserves restricted products, by the result just stated. Then Corollary 1.4
and Lemma 2.4 combine to prove that φ is an isomorphism (and so the unique one that induces Φ, by
Result 2.1). �

Without any finiteness assumption, the result may fail, as shown by [11, Example 4.7]. Also observe
that if Ershova’s theorem is indeed true for all Brandt semigroups (that are not groups with adjoined zero)
the proof of the theorem would extend to all quasi-connected, completely semisimple inverse semigroups
without nontrivial isolated subgroups.
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In the rest of this section we examine several hypotheses studied by the author and show that each
implies quasi-connectedness. We thereby deduce [11, Theorems 4.3 and 4.5].

In [11, Proposition 3.1(1)], the author showed that an inverse semigroup is shortly linked (see the
end of the previous section for the definition) if and only if no idempotent is strictly below infinitely
many idempotents of any monogenic inverse subsemigroup. In the same paper, we considered several
definitions that were motivated both by this property and by the archimedean property introduced in
[7]: ES is archimedean in S if whenever a ∈ S, e ∈ ES , e < aa−1 and aa−1 > a−1a, then a−nan ≤ e for
some positive integer n.

An inverse semigroup S is pseudo-archimedean if no idempotent of S is strictly below every idempo-
tent of a free monogenic or bicyclic inverse subsemigroup. Clearly, every shortly linked inverse semigroup
is pseudo-archimedean. Example 4.11 of [1] shows that the pseudo-archimedean property is strictly
weaker than that of being shortly linked, even in aperiodic, E-unitary, completely semisimple inverse
semigroups. It is not difficult to see that this example is also not shortly connected, thus providing (in
light of Proposition 4.4 below) a rather more complicated alternative to the example in Proposition 3.6
above.

In [11], the author introduced the following conditions. An inverse semigroup S faintly archimedean if
whenever an idempotent e of S is strictly below every idempotent of a bicyclic or free monogenic inverse
subsemigroup 〈a〉, then e < a. Adjoining a zero to a free monogenic inverse semigroup yields a faintly
archimedean inverse semigroup that is not pseudo-archimedean. It is straightforward to verify that the
example constructed in Proposition 3.6 is faintly archimedean. The semigroup S quasi-archimedean if
whenever an idempotent e is (not necessarily strictly) below every idempotent of 〈a〉, where a ∈ NS ,
then e < a.

PROPOSITION 4.3 The following are equivalent for an inverse semigroup S:

(1) S is quasi-archimedean;

(2) if a ∈ NS, b < a and bb−1 is below every idempotent of 〈a〉, then b ∈ ES;

(3) S is faintly archimedean and 〈a〉 is aperiodic for each a ∈ NS;

(4) S is faintly archimedean and ES ∪NS is an order ideal of S;

(5) for each a ∈ NS, 〈a〉 is aperiodic and whenever b < a, bb−1 < ana−n and b−1b < a−nan for every
positive integer n, then b ∈ ES.

Proof. All of these equivalences are proven in [11, Proposition 3.3] except (4). Suppose S is quasi-
archimedean, a ∈ NS and b < a. Put e = bb−1. Now if b ∈ He then e = bnb−n < ana−n for every
nonzero integer n, and so e is below every idempotent of 〈a〉. By (2), b = e. Hence b ∈ ES ∪NS .

To prove that (4) implies (3) we show that for any inverse semigroup S in which ES ∪NS is an order
ideal, 〈a〉 is aperiodic for each a ∈ NS . Refer to the classification of monogenic inverse semigroups in
the introduction. The only nonaperiodic ones are those in class (ii) and those in class (iii) with l > 1.
In each case, if a is a generator then the kernel is a group with identity e = ana−n, containing the
nonidempotent ea < a, contradicting the hypothesis. �

PROPOSITION 4.4 Every quasi-archimedean inverse semigroup is quasi-connected.

Proof. We use (5) of the previous proposition. Suppose a, b ∈ NS , b < a. Since b 6∈ ES , either
there exists a greatest positive integer n such that bb−1 < ana−n or the left-right dual holds. By the
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self-dual nature of quasi-connectedness, we need only consider the former situation. For 1 ≤ k ≤ n
put ck = (aka−k)a. Then ckc−1

k = aka−k. Since c2
k = (aka−k)a(aka−k)a = ak+1a−ka, it follows that

c2
kc−2

k = ak+1a−kaa−1aka−(k+1) = ak+1a−kaka−(k+1) = ak+1a−(k+1).
Note that the idempotents aka−k, k = 1, . . . , n, are distinct. For if aka−k = ak+ma−(k+m), with

m > 0, then aka−k = ala−l for all l > 0, leading to a contradiction to the assumption on bb−1.
Then b < cn < cn−1 < · · · < c1 = a. Now bb−1 < cnc−1

n and c2
nc−2

n = an+1a−(n+1). By the
assumption on bb−1, therefore bb−1 6< c2

nc−2
n . Thus b is quasi-covered by cn. If n = 1, the sequence

b < c1 = a suffices.
If n > 1, then for 1 ≤ k ≤ n, ckc−1

k < ck−1c
−1
k−1 and ckc−1

k 6< c2
k−1c

−2
k−1 (since equality holds, by the

calculation above). That is, ck is quasi-covered by ck−1.
Setting b = b0 and bk = cn+1−k therefore yields the requisite sequence of quasi-coverings in this case.�

As a consequence of the final statement of this proposition, Theorem 3.2 specializes to [11, Theorem
2.6] and Theorem 4.2 specializes to [11, Theorem 4.5].

It was observed above that the example in the proof of Proposition 3.6 is faintly archimedean. By
virtue of Propositions 4.3 and 4.4, it is therefore quasi-connected.

In [6, Examples 5.5, 5.6], Goberstein provided aperiodic, shortly connected inverse semigroups that
are not faintly archimedean. By virtue of Corollary 3.4, these examples also serve to distinguish quasi-
connectedness from the quasi-archimedean property.
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