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Abstract

The convex subsemilattices of a semilattice E form a lattice Co(E) in the natural
way. The purpose of this paper is to study how the properties of this lattice relate
to the semilattice itself. For instance, lower semimodularity of the lattice is
equivalent, along with various properties, to the semilattice being a tree. When
E has more than two elements the lattice does, however, fail many common
lattice-theoretic tests. It turns out that it is more fruitful to describe those
semilattices E for which every “atomically generated” filter of Co(E) satisfies
certain lattice-theoretic properties.

A subsemilattice F of a semilattice E is convex if a, b ∈ F, c ∈ E and a ≤
c ≤ b imply c ∈ F . Since the intersection of any family of convex subsemilattices
is again convex, these subsemilattices form a complete lattice Co(E) in the
usual way, with the empty subsemilattice as its least element. Following a long
tradition, the purpose of this paper is to study how the properties of this lattice
relate to the semilattice itself. A survey of the corresponding study of the lattice
L(E) of all subsemilattices of E may be found in [10]. Our lattice is rarely a
sublattice of L(E) (see Proposition 1.3) and the results we obtain are of quite a
different nature. For instance, we show in Theorem 1.4 that every [finite] lattice
is embeddable into Co(E) for some [finite] semilattice E , whereas Adaricheva
[2] proved that a finite lattice is embeddable in L(E), for some finite E , if and
only if it is lower bounded.

Two primary, related perspectives emerge:

(1) Given a lattice theoretic property, for which semilattices E does the
associated lattice have this property? Our results show that Co(E) is sufficiently
complex that many such properties reduce E to cardinality at most 2. However
both lower semimodularity and join semidistributivity of Co(E) are equivalent
to the property that E be a tree. We discovered that the latter result was
originally found by K. V. Adaricheva [1], the only other work on this general
topic of which we are aware.

(2) Which properties P of a semilattice E are determined by its asso-
ciated lattice, in the sense that if E satisfies P and F is a semilattice with
Co(F ) ∼= Co(E) then F also satisfies P ? It is immediate from the previ-
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ous paragraph that being a tree is such a property. We show that being join
semidistributive (as a semilattice) is another such property, corresponding to
the lattice theoretic property that each interval of Co(E) of the form [{e}, E]
(which we shall call an “atomically generated filter”) is pseudocomplemented.
In fact we shall see that properties of the atomically generated filters of Co(E)
prove to be a more useful tool than those of the full lattice.

In a parallel paper [4], as part of a more general study of lattices of convex
inverse subsemigroups of inverse semigroups, we take the latter perspective
further: we completely determine the relationship between any two semilattices
with isomorphic lattices of convex subsemilattices. Some results from that paper
will be useful herein.

Theorems 1.3 and 3.1 and parts of Theorems 2.1 and 2.3 are contained
in the first author’s doctoral dissertation [3].

The lattice Co(L) of convex sublattices of a lattice L has been studied in
a series of papers, the first by K-M. Koh [7] who proved, among other results,
that if Co(L) is upper semimodular then |L| ≤ 2 and, for finite L , Co(L) is
lower semimodular if and only if L is a chain.

1. Preliminaries

Let E be a semilattice, with partial order ≤ and meet operation denoted simply
by juxtaposition. If a ≤ b in E , then the interval [a, b] = {c ∈ E: a ≤ c ≤ b}
and the convex subsemilattice [a, b) = {c ∈ E: a ≤ c < b} . The notation a ‖ b
means that a, b are incomparable (and a �|| b that they are comparable). The
notation b 
 a means that b > a and [a, b] = {a, b} , in which case b covers a .
For X ⊆ E , then X↓= {a ∈ E: a ≤ x for some x ∈ X} and X↑ is its dual; if
X = {x} , we may instead write x↓ and x↑ . If a ‖ b , then of course a and b
will not in general have a least upper bound. If such an element exists, it will be
denoted a ∨ b . A tree is a semilattice in which no incomparable elements have
a common upper bound. Denote by Cn the n -element chain, for any positive
integer n , and by Cω the chain of natural numbers under the reverse of the
usual order. The length of a semilattice is the supremum of the cardinalities of
its totally ordered subsemilattices.

As remarked above, Co(E) is not in general a sublattice of L(E), al-
though it shares the same meet, namely intersection. As in L(E), the least
element of Co(E) is the empty subsemilattice. If X ⊆ E , we denote the sub-
semilattice that it generates by 〈X〉 and the convex subsemilattice that it gen-
erates by 〈〈X〉〉 . If X = {x1, x2, . . . , xn} we may instead write 〈x1, x2, . . . , xn〉
and 〈〈x1, x2, . . . , xn〉〉 , respectively. If U, V ∈ Co(E), we denote their join in
L(E) by U ∨ V and their join in Co(E) by U � V . The relationship between
these operations is easily seen to be the following.

Proposition 1.1. Let E be a semilattice.

(1) If X ⊆ E , then 〈〈X〉〉 is the union of the intervals [a, b] , a, b ∈ 〈X〉 ,
a ≤ b ; hence 〈〈X〉〉 ⊆ X↓ ;
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(2) in particular, if U is any subsemilattice of E then 〈〈U〉〉 is the union of
the intervals [a, b] , a, b ∈ U , a ≤ b ; for any a ∈ E , 〈〈a〉〉 = {a} ;

(3) hence if U, V ∈ Co(E) , then U � V is the union of the intervals [a, b] , for
a, b ∈ U ∨ V, a ≤ b .

Example 1.2. Let C3 be the three-element chain {e, f, g} , where e > f >
g , and let V3 be the three-element semilattice {e′, f ′, g′} , where e′ ‖ g′ . Then
Co(C3) ∼= Co(V3). More specifically, the bijection φ that takes a → a′ , a ∈ C3 ,
induces an isomorphism Co(C3) → Co(V3) by the rule A → Aφ .

Clearly, then, the lattice of convex subsemilattices does not determine
a semilattice up to isomorphism. However, this example also serves other
purposes. Note that since V3 has no three-element chains, every subsemilattice
is convex, so that Co(V3) ≤ L(V3) (in fact, they are equal, of course). However,
C3 does not have this property (since 〈e, g〉 = {e, g} while 〈〈e, g〉〉 = C3 ) and
this clearly remains true in any semilattice containing a copy of C3 . Hence we
have shown the following.

Proposition 1.3. A semilattice E has the property that Co(E) ≤ L(E) if
and only if it has length at most two.

It was remarked in the introduction that the following result contrasts
sharply with the situation for the lattice of all subsemilattices.

Theorem 1.4. Every [finite] lattice is embeddable in the lattice of convex
subsemilattices of some [finite] semilattice E .

Proof. Let L be a lattice. Then L is embeddable in Co(E), where E is
the semilattice (L,∨), under the map a → a↑ . For if a, b ∈ L , the equations
a↑ ∩ b↑= (a∨ b)↑ and a↑ ∨b↑= (a∧ b)↑ are clear; and the convexity of principal
filters then implies that a↑ � b↑ also equals (a ∧ b)↑ .

We conclude this section by reviewing the definitions of some of the less
frequently met properties that a lattice may possess. See [6] for general lattice
theoretic concepts and definitions.

A lattice L is upper semimodular if for all a, b ∈ L , a 
 a∧b ⇒ a∨b 
 b .
There are many variations on this definition and even the terminology is not
consistent – see the monograph by Stern [9] for a discussion. (Gratzer [6]
uses a different, but equivalent, formulation). We shall consider what are
probably the two most familiar variations. The lattice L is weakly upper
semimodular (Stern also calls this condition “Birkhoff’s condition”) if for all
a, b ∈ L , a, b 
 a ∧ b ⇒ a ∨ b 
 a, b . As implied by the name, upper
semimodularity implies weak upper semimodularity. For lattices of finite length,
the two conditions are equivalent.

The modularity relation M on a lattice L is defined by aMb if (a∧b)∨x =
(a∨x)∧ b for all x ≤ b . It is often easier to use the equivalent formulation aMb
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iff x = (a ∨ x) ∧ b for all x ∈ [a ∧ b, b] . The relation M∗ is the dual: in the
second formulation aM ∗b iff x = (a ∧ x) ∨ b for all x ∈ [b, a ∨ b] . The lattice
L is M -symmetric if M is symmetric. It is easily seen that M -symmetry is
implied by modularity and in turn implies upper semimodularity. For lattices
of finite length, M -symmetry and upper semimodularity are equivalent.

Lower semimodularity and its weak variant are defined dually; M∗ -
symmetry is the dual of M -symmetry.

A lattice L is meet semidistributive, or satisfies SD∧ , if for all a, b, c ∈ L ,
a ∧ b = a ∧ c ⇒ a ∧ (b ∨ c) = a ∧ b . Join semidistributivity, the property SD∨ ,
is defined dually.

Since the atoms of Co(E) are the singleton sets, it is clear that this lattice
is atomistic: every element is a join of atoms. The following result will be useful.

Result 1.5 [9, the dual of Theorem 9.1.1] Every atomistic, join semidistribu-
tive lattice is M∗ -symmetric.

A lattice L is pseudocomplemented if it has least element 0 and for each
a ∈ L , there is a greatest element a∗ with the property that a ∧ a∗ = 0.

A (finitely generated) lattice L is lower bounded if it is the image of a free
lattice of finite rank under a homomorphism with the property that the inverse
image of each principal filter has a least element. See [5] for a comprehensive
study. It is shown there (Theorem 2.20) that every lower bounded lattice is join
semidistributive but (page 42) the lattice of convex subsets of the four-element
chain is join semidistributive and not lower bounded. (This lattice is Co(C4) in
our terminology.) It is also shown (Corollary 2.17) that lower boundedness is
preserved by homomorphisms, sublattices and finite direct products.

It is a simple exercise to check that the lattice in Figure 1 fails to satisfy
M -symmetry, meet semidistributivity or pseudo-complementation. A slight
extension of the argument will suffice (Theorem 2.1 below) to characterize
the semilattices E for which Co(E) satisfies any of those properties: they can
have at most two elements. This same lattice is, however, lower bounded and
therefore join semidistributive.

Finally, as remarked in the introduction, a complete answer is given in [4]
to the question: if Co(E) ∼= Co(F ) how are E and F related? We shall make
use of a particular instance of that answer, which is formulated there in its full
generality, at least for semilattices, in Corollary 5.1.

Result 1.6 [4, Corollary 6.3] For any chain of length greater than two there is
a non-chain semilattice, of the same cardinality, having isomorphic lattice of
convex subsemilattices. In fact, for any nonminimal, nonmaximal element f of
C , Co(E) ∼= Co(F ) , where F is the orthogonal sum of f↑ and f↓ .

2. Properties of Co(E)

In this section we determine for which semilattices E the lattice Co(E) satisfies
various common lattice-theoretic properties. Many such properties result in
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Figure 1: Co(C3) for Example 1.2.

the degenerate situation whereby the semilattice has at most two elements.
However for several interesting properties a nondegenerate result is obtained,
as outlined in the paper’s introductory remarks. In the next section we shall
show that properties of the atomically generated filters of Co(E) provide more
refined results.

Theorem 2.1. For a semilattice E , each of the following properties of Co(E)
is equivalent to |E| ≤ 2 : 1) distributivity; 2) modularity; 3) M -symmetry;
4) upper semimodularity; 5) weak upper semimodularity; 6) meet semidistribu-
tivity; 7) pseudocomplementedness; 8) relative complementedness; 9) Co(E) is
a Boolean algebra.

Proof. If |E| ≤ 2, then Co(E) is either the two-element chain or the four-
element “diamond” and 1) to 9) are trivially verifiable. Further, it is well known
that 1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 5) and 9) ⇒ 1). It is also well known (and easily
verified) that 6) is inherited by sublattices, 5) and 8) by interval sublattices and
7) by principal ideals.

Now if |E| > 2 then, by virtue of Result 1.6, we may without loss
of generality assume that E contains incomparable elements e and g , with
product f , say. From Proposition 1.1 it follows that 〈〈e, g〉〉 = [f, e] ∪ [f, g] ,
with [f, e] ∩ [f, g] = {f} . It suffices to show properties 5), 6), 7) and 8) fail
in Co(E). The proofs are essentially those that apply to the semilattice V3 in
Example 1.2.

Since {e}, {g} 
 ∅ = {e} ∩ {g} but {e} � {g} ⊃ [f, g] ⊃ {g} , Co(E) is
not weakly upper semimodular.

Since {f} ∩ {e} = ∅ = {f} ∩ {g} but {f} ∩ ({e} � {g}) = {f} , Co(F ) is
not meet semidistributive.

That Co(E) is not pseudocomplemented follows from the same argument
as for SD∧ , since {f} then has no pseudocomplement.
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Suppose A is a complement of {f} in Co(E) = [∅, E] . Since e, g ∈ {f}�A
then by Proposition 1.1, e, g ∈ A . But then {f} ∩ A �= ∅ . Hence Co(E) is not
relatively complemented.

Recall that a tree is a semilattice in which no incomparable elements
possess a common upper bound – that is, every principal ideal is a chain. We
shall make repeated use of the following characterizations.

Proposition 2.2. The following are equivalent for a semilattice E :

(1) E is a tree;

(2) if A,B ∈ Co(E) and A ∩B �= ∅ , then A �B = A ∪B ;

(3) if A,B ∈ Co(E) then for any a ∈ A , A �B = A ∪
⋃

b∈B〈〈a, b〉〉 ;

(4) if A,B ∈ Co(E) and A ∩B �= ∅ , then A ∨B = A ∪B .

Proof. Suppose E is a tree, A,B ∈ Co(E) and e ∈ A ∩ B . It suffices to
show that A∪B ∈ Co(E). Let a ∈ A, b ∈ B . Since e ≥ ea and e ≥ eb , ea and
eb are comparable, so eab ∈ A ∪ B and, since eab ≤ ab ≤ a, b , ab ∈ A ∪ B .
Now suppose that a ≥ x ≥ b , x ∈ E . Since a ≥ x and a ≥ ea , x and ea are
comparable. If x ≥ ea then since ea ∈ A , x ∈ A ; otherwise e ≥ ea ≥ x ≥ b
and so x ∈ B .

Suppose (2) holds. Then for any a ∈ A , A � B = A ∪ (〈〈a〉〉 � B).
Further, for any b, c ∈ B , 〈〈a〉〉 � 〈〈b, c〉〉 = 〈〈a, b〉〉 ∪ 〈〈a, c〉〉 . Hence 〈〈a〉〉 �B =⋃

b∈B〈〈a, b〉〉 and (3) holds.

Property (2) is a consequence of (3): just take a ∈ A ∩B .

The implication (2) ⇒ (4) is clear.

Suppose (4) holds. If there exist f, g ∈ E , f‖g , with a common upper
bound e , then fg ∈ [f, e] ∨ [g, e] but fg /∈ [f, e] ∪ [g, e] , contradicting the
hypothesis.

As remarked in the introduction, the equivalence of (1) and (5) in the
following theorem was first discovered by K. V. Adiracheva [1].

Theorem 2.3. The following are equivalent for a semilattice E :

(1) Co(E) is join semidistributive;

(2) Co(E) is M∗ -symmetric;

(3) Co(E) is lower semimodular;

(4) B 
 A in Co(E) if and only if A ⊂ B and |B −A| = 1 ;

(5) E is a tree.
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Further, if E satisfies DCC then each of the above is equivalent to

(6) Co(E) is weakly lower semimodular.

Proof. (5) ⇒ (1) We include a proof for completeness. Let A,B,C ∈ Co(E)
and suppose A �B = A �C . We must show that A � (B ∩C) = A �B . Clearly
we may assume that A is nonempty and neither B nor C is contained in A .

Let b ∈ B − A , so that b ∈ A � C . Let e ∈ A . Then by Proposition 2.2,
there is some c ∈ C − A such that b ∈ 〈〈e, c〉〉 = [ec, e] ∪ [ec, c] . Since e ∈ A ,
it suffices to show that c ∈ A � (B ∩ C). By a similar argument, there is some
d ∈ B −A such that c ∈ 〈〈e, d〉〉 = [ed , e] ∪ [ed , d] .

Suppose b ∈ [ec, c] . If c ≤ d then since b ≤ c , c ∈ B ∩ C ; alternatively,
c ≤ e , in which case ec = c and b = c ∈ B ∩ C . Similarly, if c ∈ [ed , d] then
c ∈ A � (B ∩ C). The remaining case is where b ∈ [ec, e] and c ∈ [ed , e] . But
then ed ≤ c = ec ≤ b ≤ e and so ed = bd ∈ B , so that once more c ∈ B ∩ C .

(1) ⇒ (2) ⇒ (3) ⇒ (6) These were stated in the previous section.

(3) ⇒ (5) If E is not a tree then there is an interval subsemilattice
containing two elements whose meet is its least element. Since lower semimodu-
larity is preserved by ideals, it suffices to show that if F is any semilattice with
0, 1 and elements e ‖ f such that ef = 0, then Co(F ) is not lower semimodular.

By Zorn’s lemma, F has a convex subsemilattice G maximal with respect
to the property that f /∈ G and [e, 1] ⊆ G . Since F = [0, 1], 0 /∈ G . Any
convex subsemilattice of F strictly containing G contains f and therefore 0.
Hence G is maximal in Co(F ). Thus F = G � 〈〈e, f〉〉 
 G . But G∩ 〈〈e, f〉〉 ⊂
[0, e] since 0 /∈ G and for any element x of [0, f ] , ex = 0; and [0, e] ⊂ 〈〈e, f〉〉 ,
so 〈〈e, f〉〉 �
 G ∩ 〈〈e, f〉〉 .

Remark: a simpler proof exists for the previous step. However the
argument given suffices to prove that the filter of Co(E) generated by 〈〈e〉〉
is not lower semimodular, a fact that will be used later.

(6) ⇒ (5), under the additional hypothesis of DCC. We refine the proof
of the previous case. Using DCC, we may now further assume that e 
 0 and,
using it once more, that 1 = e∨ f . Let G = [e, 1]: since ea = 0 for any a /∈ G ,
F 
 G . Let H = F−{1} : clearly H ∈ Co(F ) and F 
 H . Then G∩H = [e, 1).
According to Proposition 1.1(2), [e, 1) � {0} = ∪{[0, a]: a ∈ [e, 1)} , so this
subsemilattice does not contain f since e ∨ f = 1. Hence H �
 G ∩H .

Again, we note that all the subsemilattices belong to the filter generated
by 〈〈e〉〉 .

(1) ⇒ (4) The reverse implication in (4) is clear. To prove the direct
one, suppose that B 
 A . If A is empty then |B| = 1, so we may assume
otherwise. Let a ∈ A and b, c ∈ B−A . Then A�{b} = A�{c} = B . By SD∨ ,
A � ({b} ∩ {c}) = B , whence b = c . (Clearly, a similar argument applies in all
“idempotent algebras”.)

Finally, (4) ⇒ (3) is clear.

Example 2.4. The following example shows that without the hypothesis of
DCC, weak lower semimodularity of Co(E) does not imply that E is a tree.
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Take a three-element nonchain semilattice {e, f, 0} and adjoin a disjoint
chain X = {1 = x0 > x1 > · · ·} isomorphic with Cω , where each element is
above both e and f . We show that for the resulting semilattice E , Co(E) is
weakly lower semimodular.

Suppose A,B ∈ Co(E) and A � B 
 A,B . We must show that A,B 

A ∩ B . Note first that [e, 1], [f, 1] and {e, f, 0} are all trees; thus if A � B
is contained in any of them the result follows from Theorem 2.3. Therefore
A � B contains some xi and both e and f , whence 0, so that A � B = [0, xi] .
Since xi ↓∼= E , without loss of generality we may assume i = 0, that is,
A � B = E . Hence 1 ∈ A ∪ B , say 1 ∈ A . Either e ∈ A or f ∈ A : otherwise
A ⊆ X ⊂ [e, 1] ⊂ E , contradicting the covering assumption. Without loss of
generality, e ∈ A . Since A �= E, 0 /∈ A and so A = [e, 1].

If 1 ∈ B also holds then, by similar reasoning, B = [f, 1] and A∩B = X ,
which is covered by A and B .

Otherwise, 1 /∈ B and then 0 ∈ B : otherwise B ⊂ B ∪ {0} ⊂ E ; and
x1 ∈ B : otherwise B ⊂ B∪{x1} ⊂ E . Hence B = [0, x1] and so A∩B = [e, x1] .
Now A− (A ∩B) = {1} and B − (A ∩B) = {0, f} . So A 
 A ∩B and, since
[e, x1] � {0} = [e, x1] � {f} = [0, x1] , B 
 A ∩B .

In combination with our other results, the previous theorem enables an
easy route to a description of the finite semilattices E such that Co(E) is lower
bounded. Refer to the preliminaries for the definition and relevant properties.

Theorem 2.5. Let E be a finite, nontrivial semilattice. The following are
equivalent: 1) Co(E) is lower bounded; 2) either E has length two or E is
obtained from such a semilattice by adjunction of a new zero; 3) Co(E) ∼= Co(F )
for some finite semilattice F of length two.

Proof. Suppose Co(E) is lower bounded, whence it is join semidistributive
and, by Theorem 2.3, E must be a tree. Since E is finite, if it contains a
copy of the four-element chain C4 , then it therefore contains C4 as a convex
subsemilattice. But lower boundedness is preserved by sublattices and Co(C4) is
not lower bounded. Hence E has length at most three. Now applying Result 1.6
to C4 , using the atom as f , Co(C4) is also isomorphic to the lattice Co(F ),
where F is obtained from C3 by adjoining a single additional atom. Thus if E
has length exactly three then, since it contains no such convex subsemilattice,
its least element must be meet irreducible. Hence E is as described in 2).

If E is obtained from a semilattice G of length two by adjunction of
a new zero, then [4, Corollary 5.3] states that Co(E) ∼= Co(F ), where F is
obtained from G by adjoining a new atom.

Finally, if F is any semilattice of length two, then Co(F ) = L(F ) and by
[2] (see the introduction) the lattice of subsemilattices of any finite semilattice
is lower bounded.
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3. Atomically generated filters

An alternative viewpoint on Theorem 2.3 is that amongst all semilattices, the
property of being a tree is determined by the lattice of convex subsemilattices.
We now present another such theorem. The proofs of the various parts of
Theorem 2.1 show that the failure of that lattice to satisfy many properties of
interest stems from the role of the empty subsemilattice. We may attempt to
circumvent this by focusing on the “atomically generated filters”. If L is any
lattice, a filter is a sublattice M such that M↑= M . If L has a least element,
an atomically generated filter is then one of the form a↑ , where a is an atom of
L . Equivalently, these are the maximal proper principal filters of L . In Co(E),
they are the filters [{e}, E] , e ∈ E .

We now demonstrate the fruitfulness of this approach. By one possible
analogy with lattices, we call a semilattice join semidistributive if, whenever the
joins e∨ f and e∨ g exist and are equal, with value z , say, then the join e∨ fg
also exists and equals z .

Theorem 3.1. A semilattice E is join semidistributive if and only if each
atomically generated filter of Co(E) is pseudocomplemented.

Proof. We first observe that if z ∈ E and e, f ≤ z , then the property that
e ∨ f = z is clearly equivalent to the property that [e, z] ∩ [f, z] = {z} in the
filter [{z}, E] of Co(E).

To prove sufficiency, suppose e, f, g, z ∈ E , with e ∨ f = e ∨ g = z .
Then by the previous paragraph, both [f, z] and [g, z] are contained in the
pseudocomplement [e, z]∗ of [e, z] in [{z}, E] . Hence their join [fg , z] in Co(E)
is also contained in [e, z]∗ . But then [fg , z]∩ [e, z] ⊆ [e, z]∗ ∩ [e, z] = {z} and so
e ∨ fg = z , again by the previous paragraph.

To prove necessity, let z ∈ E and let A ∈ Co(E), z ∈ A . Let B = {f ∈
E: e∨ fz = z for all e ∈ A, e ≤ z} ; let C = {f ∈ E: f ≥ z ⇒ [z, f ]∩A = {z}} .
We shall show that B ∩ C is the pseudocomplement of A in [{z}, E] . Join
semidistributivity of E immediately yields closure of B under multiplication.
That B,C ∈ Co(E) and z ∈ B ∩ C are proven easily.

Let f ∈ A ∩ (B ∩ C). Then fz ∈ A so fz ∨ fz = z , that is, f ≥ z . Then
[z, f ] ∩ A = {z} , so f = z and A ∩ (B ∩ C) = {z} . Now if X ∈ [{z}, E] with
A ∩ X = {z} , let f ∈ X . Then [fz , z] ⊆ X and for all e ∈ A with e ≤ z ,
[e, z] ⊆ A , so [e, z] ∩ [fz , z] ⊆ A ∩ X = {z} , whence e ∨ fz = z , by the first
paragraph of the proof, so that f ∈ B . If f ≥ z then [z, f ]∩A ⊆ X ∩A = {z} ,
so that f ∈ C . Hence X ⊆ B ∩ C , as required.

We may now consider other lattice-theoretic properties of the atomically
generated filters. We begin with SD∧ because of its relationship with pseudo-
complementation.

Theorem 3.2. Let E be a semilattice. If each atomically generated filter
of Co(E) satisfies SD∧ then E is join semidistributive. If E satisfies the
Descending Chain Condition, then the converse is true.
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Proof. To prove necessity, suppose e, f, g, z ∈ E , with e∨f = e∨g = z . As
in the proof of Theorem 3.1, [e, z]∩[f, z] = [e, z]∩[g, z] = {z} in the filter [{z}, E]
of Co(E). By SD∧ , [e, z] ∩ ([f, z] � [g, z]) = {z} , whence [e, z] ∩ [fg , z] = {z} ,
that is e ∨ fg = z .

Now suppose E satisfies DCC. Let e ∈ E and suppose A,B,C ∈ Co(E),
with e ∈ A ∩ B ∩ C and A ∩ B = A ∩ C . There exists a minimum element z ,
say, of A∩B ∩C . Suppose a ∈ A∩ (B �C). We shall show that a ∈ A∩B , so
that A∩ (B �C) ⊆ A∩B , as required. Since a ∈ B �C , there exist d ∈ B ∪C ,
a ≤ d , and b ∈ B, c ∈ C such that bc ≤ a . Note that if az ∈ A ∩ B = A ∩ C
then since az ≤ a ≤ d , a ∈ B ∪ C . By multiplying each of a, b, c, d by z , if
necessary, we may therefore assume that z is a common upper bound for these
elements. Since [a, z] ∩ [b, z] ⊆ A ∩ B = A ∩ B ∩ C , then by the choice of z ,
[a, z] ∩ [b, z] = {z} , that is, a ∨ b = z ; similarly a ∨ c = z and so by hypothesis
a ∨ bc = z , whence a = z .

Example 3.3. This example (the first semilattice in Figure 2, described
below) shows not only that the converse statement in Theorem 3.2 is in general
false but that it remains false for a stronger variant of the definition of join
semidistributivity: if e, f, g are mutually incomparable elements such that e, f
and e, g have identical sets of common upper bounds, then e, fg have the same
set of common upper bounds. That this property is implied by SD∧ (for the
atomically generated filters of Co(E)) follows from an argument similar to that
for join semidistributivity.

Let B = {b0 > b1 > b2 > · · ·} , C = {c0 > c1 > c2 > · · ·} and
X = {x0 > x1 > x2 > · · ·} be disjoint chains, each isomorphic with Cω .
Add the relations bi < xk iff k ≤ 2i + 1 and ci < xk iff k ≤ 2i . Now take the
union of B ∪C ∪X with the diamond {b, c, 0, x} , where bc = 0, b∨ c = x , with
b a zero for B , c a zero for C and x a zero for X .

That the resulting semilattice E is join semidistributive may be verified
by an examination of the instances of the equation e ∨ f = e ∨ g , for mutu-
ally incomparable e, f, g . The stronger property mentioned above is verified
similarly.

However the filter of Co(E) generated by {x0} does not satisfy SD∧ .
Let X ′ = X ∪ {x} , U = B ∪ X,V = C ∪ X . Then X ′, U, V ∈ Co(E),
X ′ ∩ U = X = X ′ ∩ V but, since b0c0 = bc = 0, X ′ ∩ (U � V ) = X ′ �= X .

Theorem 3.2 leads to consideration of a possible dual. Although the
concept of meet semidistributivity for lattices may be applied to semilattices
in several ways, one natural way to do so is to define a semilattice E to be
meet semidistributive if whenever ef = eg = z , say, for some e, f, g ∈ E with a
common upper bound, then f and g have a common upper bound h , say, such
that eh = z .

Theorem 3.4. Let E be a semilattice. If each atomically generated filter
of Co(E) satisfies SD∨ then E is meet semidistributive. If E satisfies the
Descending Chain Condition, then the converse is true.
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Figure 2: The semilattices in Examples 3.3 and 3.5.

Proof. To prove necessity, suppose e, f, g, z ∈ E , with e incomparable
with f and g , with ef = eg = z and with u a common upper bound for
e, f, g . Then [f, u] � [e, u] = [z, u] = [g, u] � [e, u] whence, by hypothesis,
[z, u] = ([f, u] ∩ [g, u]) � [e, u] . Now since z /∈ [e, u] , z ≥ kh for some k ∈
[e, u], h ∈ [f, u] ∩ [g, u] , whence z = eh .

Now suppose E satisfies DCC and consider the converse. Let e ∈ E and
suppose A,B,C ∈ Co(E), with e ∈ A∩B∩C and A�B = A�C . Let b ∈ B−A ,
so that b ∈ A � C . Then either b ∈ A↓ or b ≤ c for some c ∈ C − A . By a
similar argument, either c ∈ A↓ or c ≤ b1 for some b1 ∈ B − A . If b ≤ c ≤ b1
then c ∈ B ∩ C . Hence b ∈ A↓ ∪(B ∩ C)↓ .

By DCC, A �B has a least element m , say. It follows that m = a1b
′ for

some a1 ∈ A , b′ ∈ B . Since also m ∈ A�C , m = a2c
′ for some a2 ∈ A , c′ ∈ C .

Without loss of generality we may assume that a1 = a2 = a , say, and that since
m ≤ e , then a, b′, c′ ≤ e . By meet semidistributivity of E , m = ha for some
common upper bound h of b′, c′ , again h ≤ e , without loss of generality. Then
h ∈ [b′, e] ∩ [c′, e] ⊆ B ∩ C and m ∈ A � (B ∩ C). Now since b ≥ m , then from
the last sentence of the previous paragraph, b ∈ A � (B ∩ C), as required.
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Example 3.5. This example (the second semilattice in Figure 2) demon-
strates that the converse statement in Theorem 3.4 is in general false.

Let B0 = {b0 > b1 > b2 > · · ·} , C0 = {c0 > c1 > c2 > · · ·} and
X = {x0 > x1 > x2 > · · ·} be disjoint chains, each isomorphic with Cω . Add
the relations bi > xk iff k ≥ 2i and ci > xk iff k ≥ 2i − 1. Finally, adjoin a
maximum element e . The resulting semilattice E is meet semidistributive, as
may be seen by examining the instances of the equation fg = fh for mutually
incomparable elements f, g, h .

However the filter of Co(E) generated by {e} does not satisfy SD∨ . Let
A = [x0, e] , B = B0∪{e} and C = C0∪{e} . Then A,B,C ∈ Co(E); A�B = E ,
since for any i , x0bi = x2i and 〈〈X ∪{e}〉〉 = E ; and A �C = E similarly. But
B ∩ C = {e} ⊂ A .

Our next result illustrates the greater refinement obtained by considera-
tion of the atomically generated filters, although it provides no new examples
of classes of semilattices determined by their lattices of convex subsemilattices.

Theorem 3.6. For a semilattice E , each of the following properties of the
atomically generated filters of Co(E) is equivalent to the property (T), that E
be a tree:

1) distributivity; 2) modularity; 3) M -symmetry; 4) M∗ -symmetry; 5)
lower semimodularity.

Further, if E satisfies DCC, each is also equivalent to 6) weak lower
semimodularity; 7) upper semimodularity; 8) weak upper semimodularity.

Proof. From Proposition 2.2 it is immediate that in a tree the join operation
in each atomically generated filter is simply union. Thus each such sublattice
is distributive, in turn implying each of the other properties. Now the proofs
of (3) ⇒ (5) and (6) ⇒ (5) of Theorem 2.3 also prove the implications 5) ⇒
(T) and 6) ⇒ (T) of the current result, as was noted there.

We next prove 3) ⇒ (T). In a similar fashion to the proof of (3) ⇒ (5) of
Theorem 2.3, it suffices to show that if F is any semilattice with 0, 1, and
elements e ‖ f such that ef = 0, then M -symmetry fails in some atomically
generated filter of Co(F ). Let A = 〈〈e, f〉〉 and B = [f, 1]. Note that
A ∩ B = {f} . We first show that AMB . Suppose C ∈ [A ∩ B,B] and
g ∈ (A � C) ∩ B . Then by Proposition 1.1, either g ≤ a for some a ∈ A ,
that is, g ≤ e or g ≤ f ; or g ≤ c for some c ∈ C . But since g ∈ B , g ≥ f and
so g ≤ e is impossible. The other choices yield g ∈ C and so (A �C)∩B = C .
But BMA fails since [0, f ] ∈ [A ∩ B,A] but [0, f ] � B = [0, 1] = F , so that
([0, f ] �B) ∩A = A �= [0, f ] .

Finally, we prove 8) ⇒ (T), under the hypothesis that E has DCC.
Suppose that E is not a tree: the set of elements of E that are common upper
bounds for some pair of incomparable elements of E is therefore nonempty and
by the minimal principle it contains a minimal element u , a common upper
bound for a and b , say. By minimality, u = a ∨ b . Now there exist e 
 ab in
[ab, a] and f 
 ab in [ab, b] , and by the choice of u , u = e ∨ f .
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Since weak upper semimodularity is inherited by ideals, without loss of
generality we may assume that E is a semilattice with 0 and 1, containing
distinct atoms e and f , whose join is 1, and that no element strictly below 1
is a common upper bound of two incomparable elements. Let A = [e, 1] and
B = [0, e] � [e, 1). By Proposition 1.1, if x ∈ B and x ‖ e , then x ≤ b for some
b ∈ [e, 1). But then b is a common upper bound for x and e , contradicting the
assumption. So B = [0, e]∪ [e, 1). Now A∩B = [e, 1) so that A−B = {1} ; and
B−A = {0} (since e 
 0), whence A,B 
 A∩B . But B ⊂ B�{f} ⊂ F = A�B .

Example 3.7. Example 2.4 already shows that the hypothesis DCC cannot
be removed from the implication 6) ⇒ (T) in this theorem. The same semi-
lattice also shows that this hypothesis cannot be removed from the implication
7) ⇒ (T) and thus from 8) ⇒ (T), as we now see.

Let E be the semilattice of Example 2.4. We show that each atomically
generated filter of Co(E) is upper semimodular. Suppose A,B ∈ Co(E), with
A ∩ B �= ∅ and A 
 A ∩ B . We must show that A � B 
 B . In a similar
fashion to the proof of the cited example, if A �B is contained in [e, 1], [f, 1] or
{e, f, 0} then the result follows from Theorem 3.6 and we may go on to assume
that A � B = E , whence 1 ∈ A ∪ B . Clearly, we may assume that neither A
nor B is all of E .

First suppose 1 /∈ B , whence 1 ∈ A and, since A �= E , A ⊆ [e, 1],
without loss of generality. Since [e, 1] is a chain, then by Theorem 2.3, |A −
(A∩B)| = 1 and so A− (A∩B) = {1} . By convexity and the fact that A∩B
is nonempty, x1 ∈ A , so x1 ∈ B . If A ⊆ X then since 0 ∈ A � B , 0 ∈ B .
Otherwise, A = [e, 1] and so e ∈ B . Since B �⊆ [e, 1], this implies that 0 ∈ B
once more. In either case, B = [0, x1] , which is covered by E .

Now suppose 1 ∈ B . If B �⊆ X then B = [e, 1] or B = [f, 1], each of
which is covered by E . If B ⊆ X then, as in the previous paragraph, 0 ∈ A .
Since A∩B �= ∅ , [0, xi] ⊆ A for some xi ∈ B . But then A∩B ⊂ (A∩B)�{e} ⊂
A , contradicting A 
 A ∩B . Thus this case is impossible.
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