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Inverse semigroups determined by their lattices of convex
inverse subsemigroups I

Kyeong Hee Cheong and Peter R. Jones

Abstract. Every inverse semigroup possesses a natural partial order and therefore con-
vexity with respect to this order is of interest. We study the extent to which an inverse
semigroup is determined by its lattice of convex inverse subsemigroups; that is, if the lat-

tices of two inverse semigroups are isomorphic, how are the semigroups related? We solve
this problem completely for semilattices and for inverse semigroups in general reduce it to
the case where the lattice isomorphism induces an isomorphism between the semilattices of
idempotents of the semigroups. For many inverse semigroups, such as the monogenic ones,
this case is the only one that can occur. In Part II, a study of the reduced case enables us
to prove that many inverse semigroups, such as the free ones, are strictly determined by
their lattices of convex inverse subsemigroups, and to show that the answer obtained here
for semilattices can be extended to a broad class of inverse semigroups, including all finite,
aperiodic ones.

1. Introduction

The extent to which an algebraic structure is determined by some particular
associated structure has been a common theme in the algebraic literature. For
instance, the extent to which an inverse semigroup S is determined by its lattice
of inverse subsemigroups L(S) has been studied extensively by the second author
and others [5], [9]. In this paper, we consider instead the lattice Co (S) of convex
inverse subsemigroups — convex with respect to the natural order on S, that is.
We say that S is “determined” by Co (S) if whenever S and T are Co -isomorphic,
that is, Co (S) and Co (T ) are isomorphic, for some inverse semigroup T , then S

and T are isomorphic. We may also ask if there is an isomorphism (even a unique
one) of S upon T that induces the isomorphism of lattices. Less stringently, the
general question is this: if S and T are Co -isomorphic, how is T related to S?

If E and F are semilattices and Φ: Co (E) → Co (F ) is an isomorphism, then
since the atoms of each lattice are the singleton subsets, a bijection φ : E → F

is induced. We show that either φ is an isomorphism or E contains a nontrivial
totally ordered ideal K such that E decomposes as the strong semilattice K of
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subsemilattices with zero Ek, k ∈ K, with “collapsing” structure morphisms (that
is, mapping Ek to the zero of El whenever k > l). By symmetry, F decomposes as
the strong semilattice K ′ of Fk′ , k′ ∈ K ′, in an analogous way. Further, φ restricts
to a dual isomorphism of K upon K ′ and, for each k ∈ K, an isomorphism of Ek

upon Fkφ. By means of these decompositions, we obtain a complete answer to the
general question for semilattices (Corollary 6.1).

If S and T are inverse semigroups and Φ: Co (S) → Co (T ) is an isomorphism,
then it restricts to an isomorphism between the lattices associated with the re-
spective semilattices of idempotents and therefore all the results of the previous
paragraph apply. We show that either the induced bijection φ is an isomorphism or
S decomposes in a similar fashion to the above, as a strong semilattice K of inverse
subsemigroups Sk, k ∈ K, each with least idempotent, with structure maps that
send Sk to the least idempotent of Sl when k > l. Again, an analogous decompo-
sition holds for T , for a subsemilattice K ′ and inverse subsemigroups Tk′ , k′ ∈ K ′.
Once again, φ restricts to a dual isomorphism of K upon K ′; now we may only infer
that for each k, Φ restricts to an isomorphism Co (Sk) → Co (Tkφ) that induces an
isomorphism between their respective semilattices of idempotents.

By means of these decompositions, in Theorem 4.12 we reduce the general ques-
tion to the special case whereby Φ necessarily induces an isomorphism between the
semilattices of idempotents. This result is applied to show that various classes of
inverse semigroups are closed under Co -isomorphisms. For instance, this is fairly
obviously true of the aperiodic ones and less trivially it is also true of the completely
semisimple ones. In Part II, we will show that for completely semisimple inverse
semigroups, Co -isomorphisms that induce an isomorphism between the semilat-
tices of idempotents are equivalent to L-isomorphisms, that is, isomorphisms be-
tween their lattices of (all) inverse subsemigroups, with the corresponding property.
Therefore the general theorems of the second author’s recent paper [6], for instance,
apply to yield complete determination of Co -isomorphisms for wide classes of in-
verse semigroups, such as the finite aperiodic ones, and strict determinability of
various narrower classes. That Co -isomorphisms are not, in general, equivalent to
L-isomorphisms, even under the assumption above, is shown by the example of the
bicyclic semigroup, which is strictly determined by its lattice of inverse subsemi-
groups but not by its lattice of convex inverse subsemigroups [3].

2. Preliminaries

Let S be an inverse semigroup, with semilattice of idempotents ES . Its natural
partial order is given by a ≤ b if a = aa−1b, with many equivalent conditions to be
found in [8], to which we also refer the reader for all general properties of inverse
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semigroups. If a ≤ b then [a, b] denotes {c ∈ S : a ≤ c ≤ b}, with open and half-
open intervals having their usual meaning. The notation a||b means that a and b

are incomparable in the natural order (and a � ||b that they are comparable). For
X ⊆ S, then X↓ = {a ∈ S : a ≤ x for some x ∈ X} and X↑ is its dual; if X = {x},
we may instead write x↓ and x↑.

An inverse subsemigroup U of S is convex if whenever it contains a and b,
with a ≤ b, then it contains [a, b]. A type of convex inverse subsemigroup that
frequently occurs is the order ideal , one that contains all the elements below each
of its members. An inverse subsemigroup is full if it contains ES , in which case it
is easily seen to be an order ideal.

Proposition 2.1. Let S be an inverse semigroup and U an inverse subsemigroup.
Then U is convex if and only EU is a convex subsemilattice of ES; and U is an
order ideal of S if and only EU is an (order) ideal of ES .

Proof. One direction of each statement is clear. Conversely, suppose EU is convex,
u, v ∈ U and u ≤ a ≤ v. Then uu−1 ≤ aa−1 ≤ vv−1, so that aa−1 ∈ EU . But then
a = aa−1v ∈ U . A similar argument applies to order ideals. �

Since convexity is preserved by arbitrary intersections, the convex inverse sub-
semigroups of S form a complete lattice, Co (S), with the empty subsemigroup as
its least element. The lattice of all inverse subsemigroups is denoted L(S). If
X ⊆ S, we denote the inverse subsemigroup that it generates by 〈X〉 and the
convex inverse subsemigroup that it generates (its convex closure) by 〈〈X〉〉. If
X = {x1, x2, . . . , xn} we may instead write 〈x1, x2, . . . , xn〉 and 〈〈x1, x2, . . . , xn〉〉,
respectively. If U, V ∈ Co (S), we denote their join in L(S) by U ∨ V and their join
in Co (S) by U � V .

It was shown in [2] that for a semilattice E, Co (E) is a sublattice of L(E) if
and only if the length of E is at most two. In view of Proposition 2.1, Co (S)
is a sublattice of L(S) if and only if the length of ES is at most two. Since the
partial order is compatible with both the product and inversion operators, the
relationship between the operations in Co (S) and L(S) is straightforwardly seen to
be the following.

Proposition 2.2. Let S be an inverse semigroup.

(1) If X ⊆ S, then 〈〈X〉〉 is the union of the intervals [a, b], a, b ∈ 〈X〉, a ≤ b;
(2) in particular, if U is any inverse subsemigroup of S, then 〈〈U〉〉 is the union of

the intervals [a, b], a, b ∈ U , a ≤ b;
(3) hence if U, V ∈ Co (S), then U � V is the union of the intervals [a, b], for

a, b ∈ U ∨ V, a ≤ b.

A Co -isomorphism of inverse semigroups is an isomorphism between their lat-
tices of convex inverse subsemigroups. A bijection θ : S → T between two inverse
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semigroups induces a Co -isomorphism if setting AΘ = Aθ, for all A ∈ Co (S),
defines an isomorphism Co (S) → Co (T ). The following argument is well known.

Lemma 2.3. Let S, T be inverse semigroups and θ : S → T be a bijection. The
following are equivalent:
(1) θ induces a Co -isomorphism from S to T ;
(2) 〈〈A〉〉θ = 〈〈Aθ〉〉 for every subset A of S;
(3) A ∈ Co (S) if and only if Aθ ∈ Co (T ), for every subset A of S.

We say that S is determined by Co (S) if whenever there is an isomorphism
Φ: Co (S) → Co (T ) then T is isomorphic to S; and we say S is strictly determined
by Co (S) if there is, in addition, an isomorphism of S on T that induces Φ.

Finally, we also review semilattice decompositions (see [8] or any book on semi-
group theory). If there is a homomorphism of a semigroup S upon a semilattice K,
then the inverse image of each element k of K is a subsemigroup Sk, say, of S and
S is said to be the semilattice K of subsemigroups Sk, k ∈ K.

An important method for constructing such compositions is the strong semilattice
construction (in a different formulation, also known as the P�lonka sum). Given a
semilattice K, a pairwise disjoint family of semigroups Sk, indexed by K, and a
transitive family of “structure homomorphisms” {ωk,l : k ≥ l}, such that ωk,k is
the identity for each k, the union

⋃{Sk : k ∈ K} becomes a semigroup under the
operation: if a ∈ Sk, b ∈ Sl, then ab is defined as the product aωk,klbωl,kl in the
component Skl. We use the notation [K; Sk, ωk,l] to formally denote the result of
this construction. Now this semigroup is indeed the semilattice K of subsemigroups
Sk, but not all such decompositions arise in this way. It is easily verified that any
semilattice of inverse semigroups is again an inverse semigroup.

3. Co -isomorphisms of semilattices I

Suppose S and T are inverse semigroups and Φ: Co (S) → Co (T ) is an isomorph-
ism. The atoms of Co (S) are the singleton subsets {e} = 〈〈e〉〉, e ∈ ES , and likewise
for Co (T ). Hence the rule 〈〈e〉〉Φ = 〈〈eφ〉〉 determines a bijection φ : ES → ET .
Moreover, since ES and ET are the joins of the atoms of Co (S) and Co (T ) respec-
tively, ESΦ = ET and so Φ restricts to a Co -isomorphism between the semilattices
ES and ET .

In this section we shall study those properties of the bijection φ that follow
solely from the properties of the restriction of Φ to Co (ES). After proving our
main result for inverse semigroups, in Section 3, we shall return to the semilattice
case in Section 5.

The following small examples will serve an illustrative purpose throughout this
paper. (See Figure 1 for the corresponding lattice.) For a start they demonstrate
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C3

〈〈e, f〉〉 〈〈f, g〉〉

〈〈f〉〉〈〈e〉〉 〈〈g〉〉

∅

Figure 1. Co (C3) for Example 3.1.

that φ need not always be an isomorphism; remarkably, every such example follows
the pattern of these examples, as we shall see. If P is any poset, then P d denotes
its order dual.

Example 3.1. Let C3 be the three-element chain {e, f, g}, where e > f > g, and
let V3 be the three-element semilattice {e′, f ′, g′}, where e′||g′. Then the bijection
φ that takes a → a′, a ∈ C3, induces an isomorphism Co (C3) → Co (V3). Note that
φ restricts to an isomorphism on [f, e] but inverts the ideal K = [g, f ]. Similarly,
φ−1 inverts the ideal K ′ = [f ′, g′] of F .

Example 3.2. Co (C3) ∼= Co (C3
d), induced by the dual isomorphism C3 → C3

d.
Once again, there is a nontrivial ideal K that is inverted by the bijection. There is
also another isomorphism of Co (C3) on Co (C3

d), this time induced by the obvious
isomorphism of C3 upon C3

d.

Through Proposition 3.7 we shall consider the following situation: E and F

are semilattices and Φ: Co (E) → Co (F ) is an isomorphism; φ : E → F is the
bijection defined above. Observe that Φ is induced by φ (and Φ−1 by φ−1). For if
A ∈ Co (E) then for any a ∈ A, {aφ} = 〈〈a〉〉Φ ⊆ AΦ, so that Aφ ⊆ AΦ; the reverse
inclusion follows by applying the same argument to Φ−1. It is clear that if there
is any bijection E → F that induces Φ then it must be φ itself. Thus E is strictly
determined by Co (E) if and only if φ is an isomorphism.

Lemma 3.3. The bijection φ has the following properties, and the corresponding
ones hold for its inverse φ−1. Let e, f ∈ E. Then

(1) 〈〈e, f〉〉Φ = 〈〈eφ, fφ〉〉;
(2) (ef)φ ≥ eφfφ and either (ef)φ ≤ eφ or (ef)φ ≤ fφ;
(3) if e ≤ b ≤ f then bφ ≥ eφfφ and either bφ ≤ eφ or bφ ≤ fφ.



Algebra Universalis December 30, 2002 11:42 1801u F02060 (1801u), pages 1–30 Page 6 Sheet 6 of 30

6 Kyeong Hee Cheong and Peter R. Jones Algebra univers.

Proof. These are immediate from the definition of φ and the description of the
convex subsemilattices generated by two elements. �

Proposition 3.4. The following properties of φ also hold:

(1) if φ is order-preserving on E, then it is an isomorphism;
(2) if φ restricts to an isomorphism on a subsemilattice G of E, then it also re-

stricts to an isomorphism on its convex closure 〈〈G〉〉; in particular, if e < f

and eφ < fφ then φ restricts to an isomorphism on [e, f ];
(3) if e, f are incomparable elements of E that have a common upper bound g, say,

then φ restricts to an isomorphism on [ef, g].

Proof. (1) Since ef ≤ e, f , from the hypothesis it follows that (ef)φ ≤ eφfφ. But
the reverse inequality always holds, by the preceding lemma.

(2) If G is any subsemilattice and φ is an isomorphism on G, then by Proposition
2.2, any comparable pair of distinct elements of 〈〈G〉〉 lies within some interval [e, f ],
with e, f ∈ G, and so eφ < fφ. In view of (1), it suffices to show that φ is order-
preserving on [e, f ]. We first show that [e, f ]Φ ⊆ [eφ, fφ]. If e < b < f then by (3)
of the preceding lemma, bφ ≥ eφfφ = eφ and, since bφ �= eφ, bφ < fφ, as required.
Now if e ≤ a < b ≤ f we apply what we have just proven to the interval [e, b] to
obtain aφ < bφ.

(3) We show that (ef)φ < gφ and apply (2). By Lemma 3.3(2), either (ef)φ < eφ

or (ef)φ < fφ. Applying (3) of the same lemma to ef < e < g, either eφ < (ef)φ
or eφ < gφ; similarly, either fφ < (ef)φ or fφ < gφ. Then either (ef)φ < eφ < gφ

or (ef)φ < fφ < gφ. �

The implications of these simple results are quite profound. The following in
essence determines the structure of F in the case that E has an identity element
(see Corollary 6.4 for a full description of this situation). The orthogonal sum of
two semigroups with zero is the semigroup obtained by identifying the two zeroes
and setting all otherwise undefined products equal to that zero.

Proposition 3.5. Let e ∈ E. Exactly one of the following holds:

(1) for every f < e, fφ < eφ, in which case φ restricts to an isomorphism of e↓
upon e↓φ = eφ↓;

(2) there exists f < e such that fφ > eφ, in which case e↓ is a chain and φ restricts
to a dual isomorphism of e↓ upon e↓φ ⊆ eφ↑;

(3) there exists f < e such that eφ||fφ, in which case, setting e0 = (eφfφ)φ−1,
f < e0 < e, e↓ = e0↓∪ [e0, e], e0↓ is a chain, φ restricts to a dual isomorphism
on e0↓ and to an isomorphism on [e0, e], and e↓φ is the orthogonal sum of
e0↓φ and [e0, e]φ, with e0φ = eφfφ as zero.

Proof. (1) This is immediate from (2) of the previous proposition.
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(2) Note first that for any g < e, g must be comparable with f (otherwise, by (3)
of the previous proposition, fφ < eφ). Now if f < g < e then, by Lemma 3.3(3),
gφ ≥ fφeφ = eφ; if f > g then by the same result, since fφ �≤ eφ, fφ < gφ. Thus
e↓φ ⊆ eφ↑.

Now suppose that g, h ∈ e↓. We may apply the outcome of the previous para-
graph, replacing f by g (and g by h). Thus g and h are comparable, so that e↓ is
a chain, and if g > h (similarly, in the converse case) gφ < hφ, so that φ is a dual
isomorphism on e↓.

(3) First we observe that from (2) it follows that the second and third cases
are mutually exclusive. Now setting e0 as specified, e0φ ∈ 〈〈eφ, fφ〉〉, so that e0 ∈
〈〈e, f〉〉 = [f, e]. Thus we have e > e0 > f whilst eφ > e0φ < fφ, so that by (1) φ

restricts to an isomorphism on [e0, e], and by (2) it restricts to a dual isomorphism
on the chain e0↓.

Next, suppose that there is an idempotent h < e, incomparable with e0. Then
e0 > e0h, but by (3) of the previous proposition, e0φ > (e0h)φ, contradicting the
previous sentence. Hence e↓ = e0↓ ∪ [e0, e].

Finally, suppose x ∈ [e0, e] and y ∈ e0↓. Then since x ≥ e0 ≥ y, it follows
from Lemma 3.3 that e0φ ≥ xφyφ. Since φ is order-preserving on [e0, e], xφ ≥
e0φ = eφfφ; and since φ is order-inverting on e0↓, yφ ≥ eφfφ, whence the opposite
inequality also holds, giving the final statement of the proposition. �

In the case that φ is not an isomorphism, it now follows that there is always an
element e ∈ E such that eφ < fφ for some f < e. Let Kφ consist of all such e,
together with the zero of E, if it has one. In this event, Kφ−1 is also then defined.

Proposition 3.6. Suppose that φ is not an isomorphism. Then Kφ and Kφ−1 are
chains that are nonzero ideals of E and F , respectively, and φ restricts to a dual
isomorphism between them.

Proof. Put K = Kφ and K ′ = Kφ−1 . That each is an ideal follows from (2) of
the previous proposition. Suppose e, f ∈ K. If ef < e, f then (ef)φ > eφ, fφ,
contradicting Lemma 3.3(2). Hence e � ||f and K is a chain. Since φ−1 is not an
isomorphism, K ′ is also a chain.

In view of the definitions, it remains to show that Kφ ⊆ K ′. Let e ∈ K. If e is
not the zero of E then eφ < fφ for some f < e. By the definition of K ′, it contains
fφ and so also eφ. If e is the zero, then there exists f ∈ K, f > e, whence eφ > fφ

and from the definition of K ′, it contains eφ. �

Proposition 3.7. Suppose that φ is not an isomorphism; put K = Kφ. Then for
every e ∈ E there is a unique element eK of K such that (a) eK ≤ e and (b)
eKφ ≤ eφ.
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Proof. Let f ∈ K, f �= 0. Put eK = e(eφfφ)φ−1. Clearly eK ≤ e. By Proposition
3.3(2), either eKφ ≤ eφ or eKφ ≤ eφfφ; in either event, eKφ ≤ eφ. Now since
f ∈ K then, by the previous proposition, fφ ∈ K ′. Since K ′ is an ideal, it contains
eφfφ, whence K contains (eφfφ)φ−1 and thus eK , by applying the same logic to
φ−1.

To prove uniqueness, suppose g, h ∈ K, e ≥ g, h and eφ ≥ gφ, hφ. Since K is a
chain, we may suppose, without loss of generality, that g ≥ h. Then by Proposition
3.4(2) gφ ≥ hφ. But since g, h ∈ K, gφ ≤ hφ and so g = h. �

The following definition abstracts Kφ. An invertible ideal of a semilattice E is
a nontrivial subchain K that satisfies:

(I1) if e ∈ K, f ∈ E and e||f , then e and f have no common upper bound;
(I2) for every e ∈ E, there exists a greatest element of K that is below e; denote

it by eK .

From (I2) it follows that eK is uniquely defined and e ≥ eK , for all e ∈ E; and
if e ∈ K then e = eK and e↓ ⊆ K, justifying the term “ideal”. Note that if f ∈ E

then f↓ always satisfies (I2), with ef ↓ = ef . It follows easily that if K is any
invertible ideal then so is f↓ for every nonminimum f ∈ K. However, not every
invertible ideal need be principal. (For instance, if E is any chain then E is itself
an invertible ideal.)

Proposition 3.8. Suppose that φ is not an isomorphism; put K = Kφ. Then K

is an invertible ideal of E.

Proof. To prove (I1), suppose e, f are incomparable, with a common upper bound.
Then by Proposition 3.4(3), (ef)φ = eφfφ. Since K is an ideal on which φ inverts
the order, it cannot contain either e or f .

Let e ∈ E and define eK as in Proposition 3.7. Since eK ≤ e and K is an ideal,
the inclusion eK↓ ⊆ e↓ ∩ K in (I2) is clear. Conversely, if f ≤ e and f ∈ K, then
since K is a chain either f ≤ eK or f ≥ eK . In the latter case, fφ ≤ eKφ ≤ eφ and
so f = eK , by the uniqueness of eK . �

In Example 3.1, the invertible ideals determined by the stated Co -isomorphism
and its inverse are precisely the subchains denoted there by K and K ′. In Exam-
ple 3.2, K is the whole semilattice.

Proposition 3.9. If K is an invertible ideal of a semilattice E, then

(1) the map κ : e → eK is a retraction of E upon K;
(2) if e, f ∈ E and eK > fK , then ef = fK .

Proof. (1) We have seen that if e ∈ K, then e = eK . Now suppose that e, f ∈ E

and e ≥ f . Then fK ∈ e↓∩K, so fK ≤ eK , that is, κ is order-preserving. It remains
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to prove that for all e, f ∈ E, (ef)K = eKfK . But since e, f ≥ ef , eKfK ≥ (ef)K ;
and since e ≥ eK and f ≥ fK , ef ≥ eKfK and so (ef)K ≥ (eKfK)K = eKfK ,
yielding the desired equality.

(2) With e, f as hypothesised, note first that since e is a common upper bound
for ef and eK ∈ K, the latter are comparable. But ef �≥ eK , for otherwise f ≥ eK

and then fK ≥ eK , contradicting the hypothesis that eK > fK . Hence ef < eK ,
whence ef ∈ K and therefore ef = (ef)K = eKfK = fK , as required. �

Hence whenever E contains an invertible ideal K, say, then E is a chain of
semilattices {Ek : k ∈ K} where, for each k ∈ K, Ek = {e ∈ E : eK = k} is a
convex subsemilattice with a least element, namely k itself, and the multiplication
is determined by a transitive family of homomorphisms. Rather than elucidate the
properties of this decomposition at this point, we shall see in Theorem 4.9 that a
similar decomposition holds for inverse semigroups, after which we shall return to
the semilattice case in §5.

4. Co -isomorphisms of inverse semigroups

Let S, T be inverse semigroups and suppose that Φ: Co (S) → Co (T ) is an iso-
morphism. As noted in §2, Φ restricts to an isomorphism of Co (ES) upon Co (ET )
and hence all the results of the previous section are applicable. In particular, there
is a bijection φ : ES → ET that induces Φ on Co (ES) and whose inverse induces
Φ−1 on Co (ET ). It follows that since groups are the inverse semigroups that have
exactly one idempotent, any inverse semigroup that is Co -isomorphic to a group is
again a group. Since the natural partial order is trivial on groups, any subgroup of
an inverse semigroup is convex. In particular, the H-class He of any idempotent of
S belongs to Co (S). Then HeΦ = Heφ.

In general, it cannot be expected that there will be a bijection S → T that
induces Φ. Indeed this is not even the case for groups; any two groups of prime
order are Co -isomorphic.

In this section we reduce the problem of describing the relationship between S

and T to the case in which φ is an isomorphism of ES on ET . Thus, after some
general preliminaries, we shall focus first on the case that φ is not an isomorphism.

Proposition 4.1. Let Φ be a Co -isomorphism of S on T , inducing φ : ES → ET .
For any inverse subsemigroup U of S, E〈〈U〉〉 = 〈〈EU 〉〉. Hence if φ is an isomorphism
on EU , then it is also an isomorphism on E〈〈U〉〉.

Proof. From Proposition 2.1, EU is a convex subsemilattice of ES and so contains
〈〈EU 〉〉. Conversely, by Proposition 2.2, if e ∈ E〈〈U〉〉, then a ≤ e ≤ b for some
a, b ∈ U , whence aa−1 ≤ e ≤ bb−1 and e ∈ 〈〈EU 〉〉. The second statement follows
from Proposition 3.4(2). �
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A technical lemma is needed.

Lemma 4.2. Let S be an inverse semigroup, U any inverse subsemigroup of S and
e ∈ EU .

(1) The D-class of e in 〈〈U〉〉 is contained in U ;
(2) the set Ue = {u ∈ U : uu−1, u−1u �≥ e} ∪ {e} is an order ideal of U . If e is

maximal in EU , then Ue is full in U and U − Ue = (Re ∪ Le) − {e}.
Proof. (1) Let c be in the D-class of e in 〈〈U〉〉. There exists a ∈ 〈〈U〉〉 such that
aa−1 = e, a−1a = c−1c. Since c = (ca−1)a, where (ca−1)−1(ca−1) = e, it suffices
by duality to show that a ∈ U . By Proposition 2.2, u ≤ a ≤ v for some u, v ∈ U .
Since aa−1 = e, a = ev ∈ U .

(2) Let a, b ∈ Ue. If (ab)(ab)−1 ≥ e then aa−1 ≥ e, so a = e, in which case
(ab)(ab)−1 = ebb−1 ≤ bb−1, so that b = e also and thus ab = e. If (ab)−1(ab) ≥ e, a
similar conclusion is reached. Hence Ue is closed under products, and it is clearly
closed under inversion, so is an inverse subsemigroup of U .

The semilattice EUe = {f ∈ EU : f �> e} is clearly an ideal of EU . Hence, by
Proposition 2.1, Ue is an order ideal of U .

If e is maximal then EUe = EU and the description of Ue is clear. �

4.1. Monogenic inverse semigroups. We need to consider in detail how Φ re-
stricts to the convex closures of monogenic inverse subsemigroups, that is, the
inverse subsemigroups of the form 〈〈a〉〉. We shall show that, in the notation above,
φ always restricts to an isomorphism on the semilattice of idempotents of such sub-
semigroups. We shall also prove other facts that will be used in Part II to show that
many such inverse semigroups are strictly determined by their lattices of convex
inverse subsemigroups.

We first briefly review the necessary information, from [8, Chapter IX], to which
the reader is referred for more details.

According to [8, Theorem IX.3.11], each monogenic inverse semigroup is defined
by exactly one of the following relations, where k, l are positive integers:

(i) ak = a−1ak+1;
(ii) aka−1 = a−1ak;
(iii) ak = ak+l;
(iv) a = a.

Each has a type associated with it. Those in (i) are of type (k,∞+); those in (ii)
are of type (k,∞); those in (iii) are of type (k, l); that in (iv) is free.

Denote the free monogenic inverse semigroup on a by Ia. Its idempotents may
be uniquely expressed in the form (ama−m)(a−nan), where m, n ≥ 0 and m+n ≥ 1
(with a0 representing the identity element here and in the sequel). Let Cω denote
the totally ordered semilattice that consists of the set of nonnegative integers, under
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the reverse of its usual order. Then EIa is isomorphic to the direct product of
two copies of Cω without the maximum element (0, 0), under the isomorphism
(ama−m)(a−nan) → (m, n).

Denote 〈a : ak = ak+1〉 by Mk; thus Mk is of type (k, 1). It is isomorphic to
the Rees quotient of Ia by the ideal generated by ak and thus has a zero element
(namely ak). In terms of the representation of EIa given above, EMk

is isomorphic
to the Rees quotient of EIa by its ideal {(m, n) : m + n ≥ k}.

The semigroup of type (1,∞+) is the bicyclic semigroup. Since aa−1 is then
its identity it is not hard to see that its semilattice of idempotents consists of the
chain aa−1 > a−1a > · · · > a−mam > · · · , which is isomorphic to Cω. The bicyclic
semigroup is bisimple and the R-class Ra consists of the nonnegative powers of a,
all of which are distinct. For k ≥ 2, the semigroup of type (k,∞+) is an ideal
extension of a bicyclic kernel (least ideal) by Mk.

The semigroup of type (1,∞) is just the infinite cyclic group. For k ≥ 2, the
semigroup of type (k,∞) is an ideal extension of an infinite cyclic group by Mk.

The semigroup of type (1, l) is just the cyclic group of order l. For k ≥ 2, the
semigroup of type (k, l) is an ideal extension of the cyclic group of order l by Mk.
Thus in each of the last two cases the semilattice of idempotents is isomorphic to
that of Mk.

It follows from the above that except in the case that 〈a〉 is bicyclic or a group,
its semilattice has exactly two maximal idempotents, namely aa−1 and a−1a; and
Da = {a, a−1, aa−1, a−1a}.

We also note the following. An inverse semigroup S is completely semisimple if
each principal factor is completely 0-simple or is a group; equivalently, S contains
no bicyclic subsemigroup. Thus a monogenic inverse semigroup is completely semi-
simple if and only if it is free or of type (k,∞) or (k, l). An inverse semigroup is
aperiodic (or combinatorial) if its subgroups are all trivial. A monogenic inverse
semigroup is aperiodic if and only if it is free or of type (k,∞+) or (k, 1). Our
results on semilattices enable many cases to be covered quickly.

Proposition 4.3. Every Co -isomorphism of a free monogenic inverse semigroup
or a monogenic inverse semigroup of type (k, l) or (k,∞), with k > 2, induces
an isomorphism on its semilattice of idempotents. Hence the same is true for the
convex closures of such monogenic inverse semigroups.

Proof. We show that their semilattices contain no invertible ideals, so that Propo-
sition 3.8 applies. In the semilattice of idempotents of the free monogenic inverse
semigroup, every idempotent is a proper join and so no ideal of the semilattice can
be a chain. In the alternative cases, all nonminimum idempotents except the atoms
are proper joins and so generate semilattice ideals that are not chains; and any two
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atoms have a common upper bound, so that the semilattice ideal generated by any
atom fails (I1).

The final statement follows from Proposition 4.1. �

The semilattices of idempotents of the monogenic inverse semigroups of types
(2, l) and (2,∞) are isomorphic to the semilattice V3 of Example 3.1. Thus the
same argument cannot be applied. However, we shall prove in Theorem 4.6 that
the conclusion of the proposition always holds. We begin with the case in which
a is strictly right regular , that is aa−1 > a−1a. In that case a generates a bicyclic
semigroup, as described above. (This also covers the case when a−1a > aa−1, for
then a−1 is strictly right regular.)

Proposition 4.4. Let Φ be a Co -isomorphism of S on T , inducing φ : ES → ET ,
and let a ∈ S. If aa−1 > a−1a, then (1) φ restricts to an isomorphism on E〈〈a〉〉
and (2) there exists b ∈ 〈〈a〉〉Φ such that bb−1 = (aa−1)φ > (a−1a)φ ≥ b−1b and
〈〈b〉〉 is a full inverse subsemigroup of 〈〈a〉〉Φ.

Proof. For simplicity of notation we may assume, without loss of generality, that
S = 〈〈a〉〉. Put e = aa−1, the identity element of 〈a〉 and thus also of S, and let
f = a−1a. Let Se be the inverse subsemigroup defined in Lemma 4.2(2). Then since
e is maximal, Se is full and S−Se consists of the nonzero powers of a. Thus SeΦ is
a proper full inverse subsemigroup of T and so T − SeΦ contains a nonidempotent
b, say. Since 〈〈b〉〉Φ−1 is not contained in Se, it contains an for some positive integer
n and hence contains e itself.

To prove (1), we first show that eφ > fφ. Suppose that eφ < fφ. According to
Proposition 3.5(2), e↓(= ES) is a chain and φ restricts to a dual isomorphism of
ES upon ET . From the last paragraph it follows that 〈〈b〉〉 is not contained in any
subgroup of T whence, since ET is a chain, b must generate a bicyclic semigroup.
But since eφ is the zero of ET and belongs to 〈〈b〉〉 then, using Proposition 2.2, it must
belong to 〈b〉, a contradiction, since a bicyclic semigroup has no least idempotent.

Next suppose that eφ||fφ. By Proposition 3.5(3), setting e0 = (eφfφ)φ−1 we
have that f < e0 < e, e0 ∈ KES and φ restricts to a dual isomorphism on e0↓.
But the element c = a−1a2 has cc−1 = a−1a = f ∈ KES , while c−1c = a−2a2 < f .
Then the previous case yields another contradiction.

Hence eφ > fφ. Now for any k > 0, the element d = a−kak+1 of 〈a〉 has dd−1 =
a−kak and d−1d = a−(k+1)ak+1, so is strictly right regular, whence (a−kak)φ >

(a−(k+1)ak+1)φ by the above. By transitivity, φ is order-preserving on E〈a〉, whence
an isomorphism. Then Proposition 4.1 may be applied to prove that φ is an iso-
morphism on E〈〈a〉〉 itself.

To prove (2), we continue from the last sentence of the first paragraph. Since
e = ana−n and every other idempotent of 〈a〉 is of the form a−kak, for some
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positive integer k, E〈a〉 ⊂ 〈〈an〉〉. Applying Proposition 2.2 it follows that 〈〈an〉〉,
and thus also 〈〈b〉〉Φ−1, is a full inverse subsemigroup of 〈〈a〉〉. Hence 〈〈b〉〉 is a full
inverse subsemigroup of 〈〈a〉〉Φ. In particular, eφ = (aa−1)φ ∈ 〈〈b〉〉. But since φ is
an isomorphism, eφ is the greatest idempotent of 〈〈b〉〉. Thus by replacing b by its
inverse, if necessary, we may assume that bb−1 = eφ = (aa−1)φ and so bb−1 ≥ b−1b.
Equality cannot hold, since by Lemma 4.2(1), Heφ = HeΦ is trivial. So b is strictly
right regular. But (a−1a)φ ∈ 〈〈b〉〉 also so, by Proposition 2.2, (a−1a)φ ≥ b−mbm, for
some positive integer m. Now bmb−m = bb−1 = (aa−1)φ and by the same reasoning
that was applied to 〈〈a〉〉, 〈〈bm〉〉 is a full inverse subsemigroup of 〈〈b〉〉. Hence by
replacing b by bm, if necessary, we obtain an element in 〈〈a〉〉Φ with the requisite
properties. �

Given the hypothesis of the proposition, we do not know whether 〈〈a〉〉Φ also
need be the convex closure of a monogenic inverse subsemigroup since, in the proof,
〈〈b〉〉Φ−1 need not contain a itself. We remark that some of the arguments in (2)
also follow from more general properties of ‘archimedean’ semigroups that will be
considered in Part II.

Now we turn to the case where aa−1||a−1a, so that these are the two maximal
idempotents of 〈〈a〉〉 and, by virtue of Lemma 4.2, Raa−1 = {aa−1, a} in 〈〈a〉〉. In
contrast to the situation described in the previous paragraph, an inverse semigroup
that is Co -isomorphic to the convex closure of an element a such that aa−1||a−1 is
again a semigroup of that type, according to (2) of the next proposition, which will
be the starting point of some of our investigations in Part II.

Proposition 4.5. Let Φ be a Co -isomorphism of S on T , inducing φ : ES → ET ,
and let a ∈ S. If aa−1||a−1a, then (1) φ restricts to an isomorphism on E〈〈a〉〉 and
(2) there exists b ∈ T , unique up to inverses, such that 〈〈a〉〉Φ = 〈〈b〉〉, bb−1||b−1b

and {bb−1, b−1b} = {(aa−1)φ, (a−1a)φ}.
Proof. Again we may assume, without loss of generality, that S = 〈〈a〉〉, and we
put e = aa−1 and f = a−1a. Similarly to the proof of the last proposition, let
Se be the full inverse subsemigroup defined in Lemma 4.2, so that Se is full and
S−Se = {a, a−1}. Thus SeΦ is a proper full inverse subsemigroup of T and T −SeΦ
contains a nonidempotent b, say. Since 〈〈b〉〉Φ−1 is not contained in Se, it contains
a and is thus S itself. So 〈〈b〉〉 = T . Further, bb−1||b−1b, for otherwise b generates
a bicyclic subsemigroup and the previous proposition would be contradicted. Thus
bb−1 and b−1b are the two maximal idempotents of T .

To prove (1), note first that under the hypothesis 〈a〉 is neither bicyclic nor
a group. Suppose that it has type (k,∞+), for some k > 1, that is, it has a
bicyclic kernel. If there exist idempotents e > f in 〈a〉 such that eφ �> fφ, then by
Proposition 3.6, KES is a nonzero ideal of ES . However, below every idempotent
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of 〈a〉, and hence of S, there is a chain of idempotents of the bicyclic kernel and
according to the previous proposition, φ preserves the order on such idempotents,
contradicting the properties of KES .

In view of Proposition 4.3, only the types (2,∞) and (2, l) remain to be con-
sidered. Thus we may assume that 〈a〉 has a group kernel with identity a2a−2 =
a−2a2 = ef . Then E〈a〉 = {e, f, ef}, in which event ES = [ef, e] ∪ [ef, f ].

We prove first that eφ||fφ. Suppose that eφ < fφ (in the event of the opposite
inequality, we may simply interchange the roles of e and f). Apply Proposition
3.5(3) to φ−1, whereby (eφ)0 = (ef)φ. Then eφ < (ef)φ < fφ and φ−1 re-
stricts to an isomorphism of [(ef)φ, fφ] upon [ef, f ] and to a dual isomorphism of
[eφ, (ef)φ] = (ef)φ↓ upon [ef, e]. But then fφ is the unique maximal idempotent
of T , contradicting the remarks concluding the last paragraph.

Hence eφ||fφ. From Lemma 3.3(2), applied to φ−1, setting h = (eφfφ)φ−1

we have h ≥ ef and, without loss of generality, h < e. Suppose h �= ef ; then
since ef = a−2a2 (by the assumption in the second paragraph of the proof), ef =
a−1(ef)a < a−1ha < a−1ea = f . Hence (ha)(ha)−1 = h||a−1ha = (ha)−1(ha) and
applying the result already proven above, hφ||(a−1ha)φ. But hφ = eφfφ is the
minimum idempotent of T , so this incomparability relation is impossible. Hence
h = ef , whence eφfφ = (ef)φ and by Lemma 3.3 and Proposition 3.4, φ is an
isomorphism on ES .

To prove (2), observe that in the first paragraph of the proof it was shown that
an element b exists with the property that 〈〈a〉〉Φ = 〈〈b〉〉 and bb−1||b−1b. By the
comments preceding the statement of the proposition, bb−1 and b−1b are then the
two maximal idempotents of 〈〈b〉〉 and Rbb−1 = {bb−1, b}. Since φ restricts to an
isomorphism on E〈〈a〉〉, {bb−1, b−1b} = {(aa−1)φ, (a−1a)φ} and, subject to replacing
b by its inverse, it is unique with this property. �

For incomparable idempotents e and f in general, the property eφ||fφ does not
imply that (ef)φ = eφfφ, as demonstrated by Example 6.2.

Combining Propositions 4.4 and 4.5 with the fact that groups are closed under
Co -isomorphisms yields the following key tool.

Theorem 4.6. Let Φ be a Co -isomorphism of S on T , inducing φ : ES → ET .
Then for any a ∈ S, φ restricts to an isomorphism on E〈〈a〉〉.

4.2. The main theorem. Returning to the situation at the beginning of the
section, we assume that φ is not an isomorphism on ES . Then all the results of
§2 apply to the restriction of Φ to Co (ES). In particular, φ determines the ideal
Kφ of ES . However, the more general context forces additional conditions on Kφ.
Thus, to abstract its properties in the general inverse semigroup setting, we need
to extend the definition of invertible ideal that was given for semilattices in the
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preceding section. We shall then work with this abstraction, eventually proving
that Kφ is indeed such an ideal of S.

An invertible ideal of an inverse semigroup S is a nontrivial subchain K of ES

such that

(I1) if e ∈ K, f ∈ E and e||f , then e and f have no common upper bound;
(I2) for every e ∈ ES , there exists a greatest element of K that is below e; denote

it by eK ;
(I3) De = He for every e ∈ K; and
(I4) if e, f ∈ K, e > f and a ∈ He, then a > f .

Clearly, an invertible ideal of S is an invertible ideal of ES that, in addition, sat-
isfies (I3) and (I4). For semilattices, the definition reduces to that of the preceding
section. Similarly to the discussion there, for any idempotent f of S, f↓ always
satisfies (I2); and it easily follows that if K is any invertible ideal of S then so is
f↓ for any nonminimum f ∈ K.

Proposition 4.7. Let K be an invertible ideal of ES. The following are equivalent:

(1) K satisfies (I3);
(2) (aa−1)K = (a−1a)K for all a ∈ S.
(3) ((ab)(ab)−1)K = (aa−1)K(bb−1)K for all a, b ∈ S.

Proof. (1) ⇒ (2). Let a ∈ S. Since aa−1 ≥ (aa−1)K , the element (aa−1)Ka belongs
to R(aa−1)K

whence, by hypothesis, to H(aa−1)K
. Thus a−1(aa−1)Ka = (aa−1)K

and so (aa−1)K ≤ a−1a. From (I2), (aa−1)K ≤ (a−1a)K . By exchanging a and
a−1 throughout, we obtain the opposite inclusion.

(2) ⇒ (3). Let a, b ∈ S and put k = (aa−1)K , l = (bb−1)K . Recalling that
K is a chain, suppose that k ≤ l. Then aa−1 ≥ (ab)(ab)−1 = abb−1a−1 ≥
ala−1 ≥ aka−1 = (ak)(ak)−1, so k = (aa−1)K ≥ ((ab)(ab)−1)K ≥ ((ak)(ak)−1)K =
((ak)−1(ak))K , using (2); and ((ak)−1(ak))K = (k(a−1a))K = kK(a−1a)K =
k(aa−1)K = k, by Proposition 3.9, yielding the desired equality. In the event
of the reverse inequality, we may apply the case just proven to the product b−1a−1

in place of ab, using (2).
(3) ⇒ (2). Setting b = a−1 yields (aa−1)K ≤ (a−1a)K and the reverse inequality

follows similarly.
(2) ⇒ (1). Let e ∈ K and suppose aa−1 = e. Then (a−1a)K = (aa−1)K = e

and so aa−1 ≤ a−1a. Now (aa−2)(aa−2)−1 = aa−2a2a−1 = (aa−1)(a−1a) = e and
hence, applying the inequality just proved, aa−1 = e ≤ (aa−2)−1(aa−2) = a2a−2 ≤
aa−1, from which if follows that aa−1 = a2a−2 and so a−1a = (aa−1)(a−1a) ≤ aa−1.
Thus a ∈ He. �

It follows that the retraction κ of ES upon K, defined in the previous section by
the rule eκ = eK , can be extended to one of S upon K by putting aκ = (aa−1)K .
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Hence S is the chain K of inverse subsemigroups {Sk : k ∈ K}, where Sk =
{a ∈ S : (aa−1)K = k}. We shall write Ek for ESk

, in which case the decomposition
of ES as the chain K of subsemilattices {Ek : k ∈ K} is that of the previous section.
Then Sk = {a ∈ S : aa−1 ∈ Ek}.

Proposition 4.8. If K is an invertible ideal of ES that satisfies (I3), then the
decomposition of S induced by the homomorphism κ, just defined, has the following
properties:

(1) each Sk is a convex inverse subsemigroup of S;
(2) each Sk has group kernel Hk, consisting of {a ∈ S : aa−1 = k};
(3) if k > l then SkSl, SlSk ⊆ Hl.

The ideal K also satisfies (I4), that is, it is an invertible ideal of S, if and only if

(4) if k > l then ab = lb = bl = ba for all a ∈ Sk, b ∈ Sl.

Proof. (1) That each Sk is an inverse subsemigroup was noted above. Convexity
follows from that of Ek.

(2) Since k is the least idempotent of Ek, Sk has a group kernel, which from the
definition of Sk is clearly Hk. Note that if aa−1 = k then (aa−1)K = k, so that
a ∈ Sk. The alternative description then follows from (I3).

(3) Let a ∈ Sk, b ∈ Sl. By Proposition 3.9(2), (a−1a)(bb−1) = l, whence ab = alb.
Since Hl is an ideal of Sl, it contains ab, and similarly, ba.

(4) Suppose K satisfies (I4). Since k is the least idempotent of Sk, ka ∈ Hk, so
by (I4), ka > l, that is, lka = l. Since ab ∈ Hl, ab = lab = lkab = lb. Similarly,
ba = bl. Since l is the least idempotent of Sl, lb = bl. The converse is immediate
from the substitution l for b. �

From (4) of this proposition it now follows that for k > l the multiplication
between Sk and Sl is determined by the “collapsing” homomorphism ωk,l that
maps Sk onto the least idempotent l of Sl. Thus the semilattice decomposition of
S is actually strong; it is determined by the family {ωk,l : k ≥ l ∈ K}, where ωk,k

is the identity map of Sk.
We now show that the invertible ideals of S characterize the decompositions of

the kind described.

Theorem 4.9. The following are equivalent for an inverse semigroup S:

(1) S contains an invertible ideal;
(2) S is the strong semilattice K of inverse subsemigroups Sk, k ∈ K, where K is

a nontrivial subchain of ES, k is the least idempotent of Sk, for each k ∈ K,
and each structure mapping Sk → Sl, k > l, is constant with value l.

Proof. Necessity has been proven above.
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To prove sufficiency, for k ≥ l denote by ωk,l the structure homomorphism
Sk → Sl. For each k ∈ K, let Ek = ESk

and for e ∈ Ek put eK = k. Observe that
for distinct k, l ∈ K, EkEl = {kl}.

To prove (I1), let k ∈ K, f ∈ ES and suppose they have a common upper bound
g. Say f ∈ El, g ∈ Em, so that m ≥ k, l. If m > l then f = fg ∈ ElEm = {l}
and since K is a chain, k and f are comparable. Otherwise, l = m, in which case
f ≥ l ≥ k.

To prove (I2), let e ∈ Ek, say, so that eK = k. For any f ∈ K, ef = kf , so f ≤ e

if and only if f ≤ k, as required.
(I3) follows immediately from Proposition 4.7, since if a ∈ Sk, say, then we have

(aa−1)K = k = (a−1a)K .
To prove (I4), let k > l in K and suppose a ∈ Sk. Then al = aωk,llωl,l = ll = l,

so a > l. �

In order to produce a Co -isomorphism between two inverse semigroups that are
decomposable according to the above theorem, we need a description of the convex
inverse subsemigroups of such semigroups.

Lemma 4.10. Let S be as in (2) of the above theorem. Then the convex inverse
subsemigroups of S are the convex inverse subsemigroups of the factors Sk, together
with the unions

⋃{Ul : l ∈ L}, where L is a nontrivial convex subchain of K and
each Ul is a nonempty order ideal of Sl.

Proof. Again denote ESk
by Ek.

First, let G be a convex subsemilattice of ES that is not contained within a
single component Ek. Let e ∈ G ∩ Ek, f ∈ G ∩ El, k > l. Then, as in the proof
of the theorem, ef = l, so l ∈ G and, since G is convex and e ≥ k > l, k ∈ G.
Hence G∩K is a nontrivial convex subchain of K and G =

⋃{G∩El : l ∈ G∩K}.
Further, again by convexity, since G∩Ek contains the zero of Ek it is a (nonempty)
ideal of Ek, and similarly for G ∩ El.

Now let U be any convex inverse subsemigroup of S that is not contained within
a single component Sk. Then, by the previous paragraph, L = EU ∩K = U ∩K is
a nontrivial convex subchain of K and, for each l ∈ L, EU ∩ESl

is an ideal of ESl
.

Hence, by Proposition 2.1, each U ∩ Sl is an order ideal.
Conversely, since for any a ∈ Sk and b ∈ Sl with k > l, ab = lb = bl = ba, it is

easily seen that any union of nonempty order ideals Ul of Sl, over some nontrivial
convex subchain L of K, is a convex inverse subsemigroup of S. �

Proposition 4.11. Let Φ be a Co -isomorphism of S upon T , inducing
φ : ES → ET . If φ is not an isomorphism, then K = Kφ is an invertible ideal
of S.
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Proof. By Proposition 3.8, K is an invertible ideal of ES . We now prove that
(aa−1)K = (a−1a)K for all a ∈ S, from which (I3) follows from Proposition 4.7. We
may assume aa−1 �= a−1a. Since K is a chain we may also assume, without loss of
generality, that (aa−1)K ≥ (a−1a)K . If equality does not hold, then by Proposition
3.9(2) (aa−1)(a−1a) = (a−1a)K . But then the interval [(a−1a)K , (aa−1)K ] of K is
contained in the interval [(aa−1)(a−1a), aa−1] of E〈〈a〉〉, contradicting Theorem 4.6.

To prove (I4), put aa−1 = e, where e > f in K. Since (I3) holds, a ∈ He,
whence fa ∈ 〈〈He ∪ {f}〉〉 and so 〈〈fa〉〉Φ ⊆ 〈〈Heφ ∪ {fφ}〉〉. Now φ inverts K,
so fφ > eφ. Thus 〈Heφ ∪ {fφ}〉 = Heφ ∪ {fφ} and so by Proposition 2.2(1),
〈〈Heφ ∪ {fφ}〉〉 = Heφ ∪ [eφ, fφ]. But since (fa)(fa)−1 = f , fa ∈ Hf and so
〈〈fa〉〉 ⊆ Hfφ, whence 〈〈fa〉〉Φ = {fφ} = {f}Φ and so 〈〈fa〉〉 = {f}, that is, fa = f

and a > f . �

Now if Φ: Co (S) → Co (T ) is an isomorphism, then so is its inverse and Φ−1

induces the bijection φ−1 : ET → ES . Thus all the above results apply to T as well.
In general, we use priming to denote the terms related to T that correspond to
those related to S. In particular, K ′ denotes the invertible ideal Kφ−1 of T and the
above results yield the corresponding strong semilattice decomposition into factors
Tk′ , k′ ∈ K ′.

We are now in a position to prove the main result of this paper, which reduces
the general consideration of Co -isomorphisms to those that induce isomorphisms on
the semilattices of idempotents. This theorem enables all other Co -isomorphisms
to be explicitly constructed in terms of those ones.

Theorem 4.12. Let K be any nontrivial chain and let {Sk : k ∈ K} be any
disjoint family of inverse semigroups, each with least idempotent. Let S be the
inverse semigroup formed by the strong semilattice construction [K; Sk, ωk,l] where,
for k > l, ωk,l maps Sk to the least idempotent of Sl.

Let K ′ be a chain dual to K, with dual isomorphism φK : K → K ′, let
{Tk′ : k′ ∈ K ′} be a disjoint family of inverse semigroups with least idempotent
and, for each k ∈ K, let Φk be an isomorphism of Co (Sk) upon Co (TkφK ) that
induces an isomorphism φk of ESk

upon ETkφK
. Let T be the inverse semigroup

formed by the strong semilattice construction [K ′; Tk′ , ω′
l′,k′ ] where, for l′ > k′, ω′

l′,k′

maps Tl′ onto the least idempotent of Tk′ .
Then there is a unique isomorphism Φ: Co (S) → Co (T ) that restricts to Φk on

Co (Sk), for each k ∈ K; the induced bijection ES → ET is not an isomorphism.
Conversely, any Co -isomorphism between inverse semigroups that does not in-

duce an isomorphism between their semilattices is found in this way. If Φ: Co (S) →
Co (T ) is such an isomorphism, inducing the bijection φ : ES → ET , then K = Kφ

and K ′ = Kφ−1 are invertible ideals of S and T , respectively, yielding semilattice
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decompositions of S and T according to Theorem 4.9, and φ restricts to a dual
isomorphism of K upon K ′.

Proof. Most of the proof of the converse has been covered above. It remains to
show that Φ restricts to an isomorphism of Co (Sk) upon Co (Tkφ) that induces an
isomorphism of ESk

upon ETkφ
.

Since φ is induced uniquely by Φ, the second part of this statement requires
φ itself to restrict to such an isomorphism. Let e ∈ ES . Then e ≥ eK and
eφ ≥ eKφ. Now eKφ ∈ K ′ and applying Proposition 3.7 to ET and φ−1 yields
(eφ)K′ = eKφ. Hence since for any k ∈ K, ESk

= {e ∈ ES : eK = k}, and
similarly in T , ESk

φ ⊆ ETkφ
. The reverse inclusion follows from an application of

the same argument to φ−1. In view of Proposition 3.7 and Proposition 3.4(2), φ is
an isomorphism on ESk

.
That SkΦ = Tkφ is now immediate from the characterization of Sk [resp., Tkφ]

as the greatest convex inverse subsemigroup of S [resp., T ] having intersection ESk

with ES [resp., intersection ETkφ
with ET ].

To prove the direct part of the theorem, we first identify the least idempotent of
each Sk with k itself, and similarly for each Tk′ . Since each φk is an isomorphism,
this leads to the equation kφk = kφK .

We use Lemma 4.10. Let U ∈ Co (S). For each k ∈ K, put Uk = U ∩ Sk and
define UΦ =

⋃{UkΦk : k ∈ K}. (Thus if U is empty, then so is UΦ and we
may from now on assume otherwise.) Put L = {l ∈ K : Ul �= ∅}. If L = {l},
UΦ = UΦl. In the alternative case, according to the lemma (and its proof) each
Ul is a nonempty order ideal and L = U ∩K, a nontrivial subchain of K. For each
l ∈ L, UlΦl contains lφl = lφK , so UΦ is the union of the chain LφK (φK being
a dual isomorphism) of inverse subsemigroups UlΦl of the components TlφK of T .
Applying the same lemma to T , to show that UΦ ∈ Co (T ) it suffices to show that
each UlΦl is an order ideal. But this follows from the fact that each Φl induces the
isomorphism φl, together with the charactization of order ideals as those inverse
subsemigroups whose semilattices of idempotents are ideals.

Hence Φ is well defined and clearly restricts to Φk on each sublattice Co (Sk).
Applying the analogous definition to T clearly yields its inverse. Since Φ and its
inverse are order-preserving, each is an isomorphism of lattices.

To show that φ is not an isomorphism, note that if e ∈ ESk
, then by definition

〈〈e〉〉Φ = 〈〈e〉〉Φk = {eφk}, so that the bijection φ : ES → ET induced by Φ is simply
the union of the bijections φk. Since kφk = kφK , it follows that φ restricts to the
dual isomorphism φK on K.

Finally, suppose Ψ is any Co -isomorphism of S upon T that restricts to Φk, for
each k ∈ K. Let U ∈ Co (S) and Uk = U ∩Sk, as above. Since U =

⋃{Uk : k ∈ K},
UΨ =

⋃{UkΨ : k ∈ K} = UΦ. �
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It must be emphasized that the components of the constructions in the theorem
may be quite independently chosen, due to the trivial nature of the multiplication.
In the next section we shall specialize it back to semilattices and illustrate with
some examples and applications. The simplest instance of the theorem is obtained
by taking K ′ as the dual Kd itself, each Tk = Sk and each Φk the identity Co -
isomorphism between them. Denote the new inverse semigroup so constructed by
SKd

. Specific examples are too obviously constructed to mention.
It is worthwhile viewing Theorem 4.12 from the perspective of a given inverse

semigroup S, using Theorem 4.9.

Corollary 4.13. Let S be an inverse semigroup. There is an inverse semigroup T

and a Co -isomorphism Φ: Co (S) → Co (T ) that does not induce an isomorphism of
ES upon ET if and only if S possesses an invertible ideal. In that event, S has a
strong semilattice decomposition as described in the first paragraph of Theorem 4.12
and all such semigroups T may be constructed according to the second paragraph
of that theorem, in terms of Co -isomorphisms that do induce isomorphisms on the
corresponding semilattices of idempotents.

We may illustrate either version of the main theorem with the case of inverse
monoids. A lattice is bounded if it has a greatest and a least element.

Corollary 4.14. Let S and T be inverse monoids. If Φ: Co (S) → Co (T ) is an
isomorphism then either (a) Φ induces an isomorphism between their semilattices
of idempotents or (b) there is a bounded chain K such that S is the chain K of
groups Gk, with constant structure homomorphisms, T is isomorphic to the dual
chain Kd of groups G′

l, again with constant structure homomorphisms, and for each
k ∈ K, the corresponding groups have isomorphic subgroup lattices.

Proof. Using the prior notation, suppose φ is not an isomorphism. Then S contains
an invertible ideal K and S is the chain K of components Sk, k ∈ K. Let e = 1K ;
from (I2), e is the greatest element of K. According to the theorem, T is the chain
K ′ of components Tk′ , k′ ∈ K ′, where K ′ is dually isomorphic to K via the dual
isomorphism φK , say. Now since T is also a monoid, K ′ has greatest element f ,
where f = 1K′ . Hence K also has a least element, that is, it is bounded.

Applying Proposition 4.8(4) to S, for k < e and b ∈ Sk, b = 1b = kb ∈ Hk, so
Sk is a group. Similarly, for each k′ < f in K ′, Tk′ is also a group.

Now Φ induces Φk : Co (Sk) → Co (TkφK ). The property of being a group is
preserved by Co -isomorphisms, so TkφK is a group for each k < e in K, that is, Tk′

is a group for each k′ > eφK , the least element of K ′.
Combining the last two paragraphs, each component of T , and therefore, each

component of S, is a group. The remaining statements follow from Theorem 4.12.
�
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We conclude this section with another way of seeing that Theorem 4.12 reduces
the general problem of describing Co -isomorphisms to those that induce an iso-
morphism on the semilattice of idempotents.

Theorem 4.15. For every isomorphism Φ: Co (S) → Co (T ) there is an inverse
semigroup S′, on the same underlying set as S, such that Φ factors into the product
of the identity map Co (S) → Co (S′) and an isomorphism Φ′ : Co (S′) → Co (T ),
set-theoretically identical to Φ, that induces an isomorphism of ES′ upon ET .

Proof. In the prior notation, if φ is already an isomorphism, one may take S′ = S.
Otherwise, decompose S and T according to Theorem 4.12 and let S′ = SKd

be the
inverse semigroup constructed following that theorem, so that the identity map is an
isomorphism of Co (S) with Co (SKd

). Since Kd and K are set-theoretically identical
and SKd

and S are both the union of the inverse subsemigroups Sk, k ∈ K, they are
also set-theoretically equal. With each “φk” as the identity isomorphism, inducing
the identity Co -isomorphism “Φk”, and “φK” as the identity map K → Kd, the
proof of the theorem shows that the identity map Co (S) → Co (SKd

) is a Co -
isomorphism.

Now φK factors as the product of the identity map K → Kd with an isomorphism
Kd → K ′ = Kφ−1. We may apply the construction of “Φ” in the proof of the
theorem, all things being the same except that φK is now an isomorphism rather
than a dual isomorphism. Essentially the same argument verifies that this new
map is an isomorphism Co (SKd

) → Co (T ). Moreover, it induces an isomorphism
ESKd → ET . For if e, f ∈ ESKd and lie in the same component Sk, the bijection
acts as the isomorphism φk; if e ∈ Sk, f ∈ Sl, k > l, say, then ef = l and the images
multiply in the same way.

Clearly the composition of these two Co -isomorphisms is the original one. �

In view of this theorem, the existence of an invertible ideal is equivalent to the
feasibilty of defining a new inverse semigroup structure S′ on the underlying set of
S in such a way that the identity map induces a Co -isomorphism of S upon S′ but
does not restrict to an isomorphism of their semilattices.

When such a structure exists, its multiplication can be explicitly stated in terms
of K, using Proposition 4.8. If a, b ∈ S′ then

(a) if (aa−1)K = (bb−1)K , their product is that in S;
(b) if (aa−1)K > (bb−1)K , (so that in S, ab = (bb−1)Kb) their product in S′ is

(aa−1)Ka;
(c) if (aa−1)K < (bb−1)K , (so that in S, ab = (aa−1)Ka) their product in S′ is

(bb−1)Kb.
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5. Co -closed classes of inverse semigroups

We apply our results to show that various classes of inverse semigroups are closed,
either under all Co -isomorphisms, or under all those that induce an isomorphism on
the semilattice of idempotents. First we shall consider when every Co -isomorphism
on a given inverse semigroup is necessarily of the latter type. We shall continue these
investigations in Part II, where indeed the focus is on individual inverse semigroups
that are determined by their lattices of convex inverse subsemigroups.

Given an inverse semigroup S, Corollary 4.13 characterizes the existence of a
Co -isomorphism that does not induce an isomorphism on ES . The complementary
situation may be characterized intrinsically.

Theorem 5.1. Let S be an inverse semigroup. Then every Co -isomorphism in-
duces an isomorphism on ES if and only if for each nonminimum idempotent e of
ES, either

(1) there exist f, g, h ∈ ES such that f ≤ e, f ||g and h is a common upper bound
for f and g; or

(2) for some f ∈ ES such that f ≤ e, Df �= Hf ; or
(3) for some f, g ∈ ES such that g < f ≤ e, there exists a ∈ Hf , a �= f , such that

a �≥ g.

Proof. From the comments following the definition of invertible ideal, it is clear that
no such ideal exists if and only if no principal ideal e↓ of ES exists that satisfies
(I1), (I3) and (I4). The theorem is merely a restatement of that fact. �

Instances of this theorem have been seen already. For example, by Theorem 4.6
every inverse semigroup that is the convex closure of a single element satisfies the
equivalent properties of the theorem. That theorem cannot actually be deduced
from the one above since it was invoked in the proof of the preliminary Propo-
sition 4.11. We first give an application of the above theorem, then show how
similar conclusions may be obtained by direct application of Theorem 4.12 and
Corollary 4.13, respectively. The specialization of Theorem 5.1 to semilattices will
be treated in the next section.

Corollary 5.2. Every Co -isomorphism of a free inverse semigroup induces an
isomorphism on its semilattice of idempotents.

Proof. It is clear from any structure theorem (e.g. in [8]) that no D-class of a free
inverse semigroup consists of a single H-class. Hence every idempotent satisfies (2)
of the theorem. �
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This result can be generalized in two ways. First, every nonmonogenic free
inverse semigroup is a nontrivial free product of monogenic ones. Now the three-
element non-chain semilattice is the free product of two singleton semilattices and
so Co -isomorphisms do not in every case induce isomorphisms on the semilattice of
idempotents of such free products. However if a free product is not a semilattice
then it follows from the description in [7], for instance, that every idempotent is
above some idempotent whose D-class is not a group and hence Theorem 5.1(2)
applies to draw the contrary conclusion. We omit the details since they would
involve substantial preparation.

Corollary 5.2 can also be deduced from the study of a more general class of
inverse semigroups, which will play an important role in Part II. First recall that
a semigroup is group bound , or an epigroup, if some power of each element belongs
to a subgroup. In view of the description in §3.1, a monogenic inverse semigroup is
group bound if and only if its semilattice of idempotents is finite. Thus in general
an inverse semigroup is group bound if and only if it contains no free monogenic
nor bicyclic inverse subsemigroup. Clearly all periodic inverse semigroups are group
bound.

An inverse semigroup S is pseudo-archimedean if no idempotent of S is strictly
below every idempotent of a free monogenic or bicyclic inverse subsemigroup. Since
neither of these types of semigroups possesses a least idempotent, the qualification
“strictly” in the definition is redundant. In view of the previous paragraph, we
may replace “free monogenic or bicyclic inverse subsemigroup” in the definition by
“monogenic inverse semigroup with infinitely many idempotents”.

Clearly every group bound inverse semigroup is pseudo-archimedean and, indeed,
the definition of the latter is nontrivial only for semigroups that are not group
bound. This property will be considered in more depth in Part II. For the moment
we observe that any inverse semigroup with the property that above any idempotent
there lies only a finite number of idempotents is pseudo-archimedean. In particular
this is true for all monogenic inverse semigroups and all free inverse semigroups
(from any of the structure theorems to which reference was made above).

Corollary 5.3. Any Co -isomorphism of a pseudo-archimedean inverse semigroup
that is not group bound induces an isomorphism on its semilattice of idempotents.

Proof. Let S be pseudo-archimedean and suppose Φ: Co (S) → Co (T ) is an iso-
morphism that does not induce an isomorphism on ES . According to Theorem 4.12,
ES contains a nontrivial subchain K such that S itself is the disjoint union of inverse
subsemigroups Sk, k ∈ K, where each Sk has k as its least idempotent. Now if S is
not group bound, it contains an element a that generates either a free or a bicyclic
subsemigroup. Clearly, 〈a〉 is contained within some Sk, but this contradicts the
definition of pseudo-archimedean, since k is below every idempotent of 〈a〉. �
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Corollary 5.4. If S is any simple inverse semigroup, or any 0-simple inverse
semigroup that is not a group with zero, then every Co -isomorphism induces an
isomorphism on ES .

Proof. We apply Corollary 4.13 directly. Since every invertible ideal corresponds
to a nontrivial semilattice decomposition, the simple case is clear; the only simple
semilattice is a trivial one. Similarly, the only nontrivial semilattice decomposition
of a 0-simple inverse semigroup is into Se = S − {0} and Sf = {0}. But to
correspond to an invertible ideal, e must be the least idempotent of S − {0}, in
which case He ∪ {0} is a nonzero ideal, whence by 0-simplicity it is all of S. �

We now turn to the main topic of this section. Some properties of an inverse
semigroup that are clearly preserved by all Co -isomorphisms are (a) being a group,
(b) being a semilattice, (c) being aperiodic. Here are some further elementary
results.

Proposition 5.5. Let Φ be a Co -isomorphism of S on T that induces an isomorph-
ism on ES. If S (a) has a group kernel, (b) has a zero or (c) is E-unitary then T

has the same property.

Proof. An inverse semigroup has a group kernel if and only it has a least idempotent,
so (a) follows from the hypothesis on φ. But a zero element is merely a least
idempotent with trivial H-class, so (b) is immediate.

Now suppose T is not E-unitary. Then there exist an idempotent f and a
nonidempotent t of T such that t > f . Thus f is the zero of 〈t, f〉. By Proposi-
tion 2.2, it is the zero of 〈〈t, f〉〉. By the previous paragraph, e = fφ−1 is the zero
of 〈〈t, f〉〉Φ−1. Hence e < s for any nonidempotent of 〈〈t, f〉〉Φ−1, so that S is also
not E-unitary. �

We go on to somewhat less elementary results. Recall that an inverse semigroup
is completely semisimple if and only if it contains no bicyclic subsemigroup.

Proposition 5.6. The class of completely semisimple inverse semigroups is closed
under Co -isomorphisms. The same is true for the class of group bound inverse
semigroups.

Proof. Let Φ: Co (S) → Co (T ), inducing φ on ES . Suppose T is not completely
semisimple, so that it contains a strictly right regular element a, say. Applying
Proposition 4.4(2) to Φ−1, there is an element b of S such that bb−1 > b−1b, that
is, b is strictly right regular. Hence S is not completely semisimple.

Next, suppose S is group bound. Then it is completely semisimple and therefore
so is T . It follows that for every element b of T that does not lie in a subgroup,
bb−1||b−1b, whence by Proposition 4.5(2), 〈〈b〉〉 = 〈〈a〉〉Φ for some a ∈ S, and φ
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restricts to an isomorphism on E〈〈a〉〉. Since 〈〈a〉〉 has a least idempotent, so does
〈〈b〉〉. By the remarks following the definition, T is group bound. �
Proposition 5.7. The class of simple inverse semigroups is closed under Co -
isomorphisms. The same is true of the class of 0-simple inverse semigroups that
are not simply groups with adjoined zero. The same is not true for the class of
bisimple inverse semigroups.

Proof. Let Φ: Co (S) → Co (T ), inducing φ on ES . Recall [4, Lemma 5.7.1] that
an inverse semigroup is simple if and only if for any idempotents g, h there is an
idempotent l such that l ≤ h, lDg. An analogous criterion holds for 0-simplicity, in
terms of the nonzero idempotents, and we omit the proof of that case.

Let g, h ∈ ET . Since we may replace h by gh, if necessary, we may assume that
g > h. Put e = gφ−1, f = hφ−1. Since S is simple, there exists k ∈ ES such that
k ≤ f and kDe. By Corollary 5.4, φ is an isomorphism, so e > f and kφ ≤ h. Let
a ∈ Re ∩ Lk, so that a is strictly right regular. By Proposition 4.4(2), there exists
b ∈ 〈〈a〉〉Φ such that bb−1 = g and b−1b ≤ kφ ≤ h, as required to prove simplicity.

It will shown in Part II that the bicyclic semigroup and all its inverse subsemi-
groups Bd are Co -isomorphic. While the bicyclic semigroup is bisimple, Bd is not,
for d other than 1. �
Proposition 5.8. The class of all pseudo-archimedean inverse semigroups is closed
under Co -isomorphisms.

Proof. If S is group bound then so is T , by Proposition 5.6, whence T is again
pseudo-archimedean. So we may suppose otherwise, whereby φ : ES → ET is an
isomorphism, according to Corollary 5.3. Suppose f ∈ ET is strictly below every
idempotent in 〈b〉, where 〈b〉 is free or bicyclic. Then f is strictly below every
idempotent of 〈〈b〉〉 and so e = fφ−1 is strictly below every idempotent of 〈〈b〉〉Φ−1.

In case 〈b〉 is free then by Proposition 4.5(2), 〈〈b〉〉Φ−1 = 〈〈a〉〉, where since 〈〈b〉〉 has
no least idempotent, neither does 〈〈a〉〉 and hence neither does 〈a〉 (applying Propo-
sition 2.2). That is, E〈a〉 is infinite. But this contradicts the pseudo-archimedean
property for S.

Alternatively, 〈b〉 is bicyclic and so by Proposition 4.4(2), 〈〈b〉〉Φ−1 contains a
bicyclic subsemigroup. Since each of its idempotents is strictly above e, this again
contradicts the assumption on S. �

It was shown in §1 that Co (S) and L(S) coincide if and only if ES has length
at most 2. We now prove a sort of complementary result for lattice isomorphisms.
We first briefly recall some basic facts about L-isomorphisms, that is, isomorphisms
between the lattices of all inverse subsemigroups. For more information, see [9]. Let
Θ: L(S) → L(T ) be such an isomorphism. Then it induces a bijection θ : ES → ET

in the same way that any Co -isomorphism does; 〈e〉Θ = 〈eθ〉. According to [9], the
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bijections θ that induce L-isomorphisms between semilattices are characterized by
the property that for e, f ∈ ES , e||f if and only if eθ||fθ, in which case (ef)θ = eθfθ.

Of course an isomorphism between two semilattices (more generally, two inverse
semigroups) induces both Co - and L-isomorphisms between them. That this rarely
happens for bijections in general is demonstrated by the following result.

Proposition 5.9. Let S and T be inverse semigroups and suppose φ : ES → ET is a
bijection that is not an isomorphism. If φ induces both an isomorphism Φ: Co (S) →
Co (T ) and an isomorphism Θ: L(S) → L(T ) then ES is a chain and φ is a dual
isomorphism. In that event, S and T are chains of groups, with collapsing structure
morphisms.

Proof. According to Theorems 4.12 and 4.9, K = Kφ is an invertible ideal of S

and S is the strong semilattice K of inverse subsemigroups Sk, k ∈ K, with k the
minimum idempotent of Sk for each k and with each structure map Sk → Sl, k > l,
constant with value l. Since φ is induced by Φ, it inverts K but is an isomorphism
on each ESk

. Suppose there is an idempotent f of S that is not in K, f ∈ Sk,
say. Since K is nontrivial, it contains l �= k. If l > k then lφ < kφ < fφ; but l||f
and since φ induces Θ, lφfφ = kφ, a contradiction. Alternatively l < k, whence
kφ < lφ while fφ ∈ Tkφ, and a similar contradiction arises from consideration of
φ−1.

So K = ES and φ is as claimed. Moreover, for each k ∈ K, ESk
= {k}, that is,

Sk is a group, with mappings as described. �

6. Co -isomorphisms of semilattices II

Of course every result in §3 specializes to semilattices. As noted earlier, the
definition of invertible ideal for inverse semigroups reduces to that for semilat-
tices. According to Theorem 4.9, the invertible ideals of a semilattice therefore
characterize its possible strong semilattice decompositions as a nontrivial chain of
semilattices with zero, having constant structure mappings between distinct com-
ponents. Then the specialization of Theorem 4.12 determines all Co -isomorphisms
between semilattices that do not induce an isomorphism. This complete solution
to the “Co -isomorphism problem” is worth stating separately.

Corollary 6.1. Let K be any nontrivial chain and let {Ek : k ∈ K} be any
disjoint family of semilattices with zero. Let E be the semilattice formed by the
strong semilattice construction [K; Ek, ωk,l] where, for k > l, ωk,l maps Ek onto
the zero of El.

Let K ′ be a chain dual to K having dual isomorphism φK : K → K ′, let
{Fk′ : k′ ∈ K ′} be a disjoint family of semilattices with zero, and for each k ∈ K,
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let φk be an isomorphism of Ek upon FkφK . Let F be the semilattice formed by
the strong semilattice construction [K ′; Fk′ , ω′

l′,k′ ] where, for l′ > k′, ω′
l′,k′ maps Fl′

onto the zero of Fk′ .
Then the union of the bijections φk, k ∈ K, is a bijection of E upon F that is

not an isomorphism, but which induces an isomorphism of Co (E) upon Co (F ).
Conversely, any Co -isomorphism between semilattices that does not induce a

semilattice isomorphism between them is found in this way.

As in the general situation, the simplest application of this theorem is obtained
by taking K ′ as the dual Kd itself — that is, the chain with the same underlying
set K and with order the reverse of that of K, so that φK is the identity map on
K — and with each Fk = Ek and φk the identity map on Ek. Let us denote the
new semilattice by EKd

.
Example 3.2 illustrates this situation, with K = C3 itself. Here is another small

illustrative example, which was cited in an earlier section.

Example 6.2. Let K be the two element chain {k, l}, k > l and let Ek = {f, k}
and El = {e, l}, with f > k, e > l. Then the four-element semilattices E and
F = EKd

, with φ the identity map, show that e||f and eφ||fφ, but φ is not an
isomorphism on 〈〈e, f〉〉.

A more typical exemplification of this corollary (and of Theorem 4.12) is given
by Example 3.1. Here K and K ′ are as denoted there; thus K = {g, f}, C3g = {g}
and C3f = {e, f}, while the constructs in V3 are obtained by priming (that is,
applying φ).

The following application is used in [2].

Example 6.3. Let E be any semilattice of length 2. Then the two semilattices
obtained by (a) adjoining a new zero to E and (b) adjoining a new atom to E are
Co -isomorphic.

Proof. Denoting the former of these two semilattices by F , and letting f be its
unique atom, K = {0, f} is an invertible ideal and F decomposes into Ff = E and
F0 = {0}. Applying Corollary 6.1 to F yields the latter semilattice. �

Here is another example of the utility of our main results. It was noted in Ex-
ample 3.1 that a semilattice with identity may be Co -isomorphic with one without
an identity. The following result, which in one direction is essentially Lemma 3.5
but follows in toto from Corollary 6.1, describes the general situation. The final
statement is also a special case of Corollary 4.14.

Corollary 6.4. Let E be a semilattice with identity. Then there is a Co -isomorph-
ism of E with a semilattice F if and only if exactly one of the following is the
case:
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(1) F ∼= E;
(2) E is a chain and F ∼= Ed;
(3) E contains a subchain K with identity f , say, E = [f, 1] ∪ K and F is the

orthogonal sum of a semilattice isomorphic to [f, 1] and a chain K ′ ∼= Kd.

Hence two semilattices with identity are Co -isomorphic if and only if either they
are isomorphic or they are dually isomorphic chains.

7. Co -closed classes of semilattices

Theorem 5.1 also simplifies, as follows.

Corollary 7.1. Let E be a semilattice. Then E is strictly determined by Co (E)
if and only if for every nonminimum e ∈ E, there exist f, g, h ∈ E such that
f ≤ e, f ||g and h is a common upper bound for f and g.

This corollary determines which singleton isomorphism classes are Co -closed.
Here is an application of a negative kind. A tree is a semilattice in which no pair
of incomparable elements has a common upper bound.

Corollary 7.2. No nontrivial tree is strictly Co -determined.

Proof. Trees are characterized by the property that each principal ideal is a chain.
It is easily verified that each nontrivial principal ideal satisfies the definition of
invertible ideal. �

Of course this corollary applies to chains. For the two-element chain, the proof
of the corollary yields the dual isomorphism onto the dual semilattice, to which it
is, of course, isomorphic. Otherwise, we may state the conclusion of the corollary
more explicitly, as follows.

Corollary 7.3. For every chain C of length greater than two there is a non-chain
semilattice, of the same cardinality, with isomorphic lattice of convex subsemilat-
tices. In fact, for any nonminimal, nonmaximal element e of C, Co (E) ∼= Co (F ),
where F is the orthogonal sum of e↑ and e↓.

Since trees are precisely those semilattices whose lattices of convex subsemilat-
tices are lower semimodular (as shown in [2]), that class is Co -closed. That this
follows from the results of the current paper is also easily shown. In fact, it is
practically immediate from Proposition 3.5(3) that the class of semilattices that
are not trees is Co -closed. Similarly, the class of semilattices that contain a pair of
incomparable elements with a least upper bound is also Co -closed.

We may expand on this argument by means of the following extension of the
cited proposition, which is easily proved by induction.
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Lemma 7.4. In the context of Proposition 3.5, if e1, e2, . . . , en are pairwise incom-
parable elements of E that have a common upper bound g, say, then φ restricts to
an isomorphism on [e1e2 · · · en, g].

Following [2] we call a semilattice E join semidistributive if whenever the joins
e ∨ f and e ∨ g exist and are equal, with value z, say, then the join e ∨ fg also
exists and equals z. Call E meet semidistributive if whenever ef = eg = z, say,
for some e, f, g ∈ E with a common upper bound, then f and g have a common
upper bound h, say, such that eh = z. These definitions are analogous to those for
lattices. It would appear that any reasonable variation may be treated in the same
way as the following.

Proposition 7.5. The classes of join distributive and of meet distributive semilat-
tices are Co -closed.

Proof. Suppose E is join semidistributive and Φ: Co (E) → Co (F ) is an isomorph-
ism, inducing φ : E → F . If e, f, g ∈ F and e∨ f = e∨ g = z, say, then if e, f, g are
not pairwise incomparable it trivially follows that e ∨ fg = z. In the alternative
case, an application of the above lemma to φ−1 suffices as for the case of trees.
Meet semidistributivity is similar. �

Join semidistributivity also follows from [2, Theorem 3.1], for this class of semi-
lattices is characterized by the property that each “atomically generated filter” of
the lattice of convex subsemilattices (that is, each filter that is generated by an
atom of the lattice – a singleton subsemilattice) is pseudocomplemented.

It was shown in [2, Theorem 3.4] that for semilattices with DCC, meet semidis-
tributivity is characterized the property that each atomically generated filter is
join semidistributive (as a lattice). However, an example was given to show that
this does not hold in general. In view of the above proposition it would be of
interest to discover a simple lattice-theoretic property that characterizes the meet
semidistributive semilattices.
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