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Inverse semigroups determined by their lattices of convex
inverse subsemigroups II

KyEoNG HEE CHEONG AND PETER R. JONES

ABSTRACT. In Part I of this paper we showed that the study of Co-isomorphisms of inverse
semigroups, that is, isomorphisms between the lattices of convex inverse subsemigroups of
two such semigroups, can be reduced to consideration of those that induce an isomorphism
between the respective semilattices of idempotents. We go on here to prove two some-
what complementary theorems. We show that the inverse semigroups Co-isomorphic to
the bicyclic semigroup are precisely the well-known simple, aperiodic, inverse w-semigroups
Bgy. And we show that for completely semisimple inverse semigroups (those that con-
tain no bicyclic subsemigroup), Co-isomorphisms that induce an isomorphism between the
semilattices of idempotents of the respective inverse semigroups are entirely equivalent
to L-isomorphisms with the same property. (An L-isomorphism is an isomorphism be-
tween the lattices of all inverse subsemigroups.) Combining this result, known results
on L-isomorphisms and the main theorem of Part I yields a complete determination of
Co-isomorphisms for broad classes of semigroups. For some slightly narrower classes it is
known that every Co-isomorphism of necessity induces an isomorphism on the semilattice
of idempotents, yielding to theorems on their Co-determinability.

1. Introduction

In Part I of this paper [3] we showed that every isomorphism ® between the
lattices Co (S) and Co (T') of convex inverse subsemigroups of inverse semigroups S
and T induces a bijection ¢ between their semilattices of idempotents Fg and Ep. If
¢ is not an isomorphism then S and T decompose in a very explicit way into strong
totally ordered semilattices of convex inverse subsemigroups, in such a way that ®
induces a Co-isomorphism between the corresponding factors in the decomposition
that does induce an isomorphism between their semilattices of idempotents. That
theorem effectively reduces the study of general Co-isomorphisms to those with this
latter property. In this sequel, we study such Co-isomorphisms. In fact, for many
inverse semigroups, all Co-isomorphisms necessarily are of this type.

It is well known that even small groups may not be determined by their subgroup
lattices (clearly all groups of prime order have isomorphic lattices). In Theorem 6.1
we show that the bicyclic semigroup B is not determined by its lattice of convex
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inverse subsemigroups; in fact Co(B) = Co (T) if and only if T = By, the simple
aperiodic inverse w-semigroup with d D-classes, for some d. (This contrasts with
the fact that the bicyclic semigroup is strictly determined by the lattice of all its
inverse subsemigroups [9].)

As a consequence of the lack of determinability of the bicyclic semigroup, in
order to look for positive results in this direction it is natural to exclude it. Thus in
the complementary part of the paper we treat completely semisimple inverse semi-
groups (those that contain no bicyclic inverse subsemigroup, in essence). We show
in Theorems 7.2 and 7.4 that if a Co-isomorphism ® induces an isomorphism on the
semilattice of idempotents of such a semigroup then ® in fact extends uniquely to a
lattice isomorphism, that is, an isomorphism between the lattices of all inverse sub-
semigroups of the respective inverse semigroups. Similarly, any lattice isomorphism
that induces an isomorphism between the semilattices of idempotents restricts to a
Co-isomorphism. Thus, in combination with the results of Part I [3], the study of
Co-isomorphisms of completely semisimple inverse semigroups reduces completely
to that of L-isomorphisms of these semigroups. Nevertheless, the study of the for-
mer has itself led to advances in the latter (see the recent paper [11]) and the most
important applications, under which strict determinability is proven, rely on know-
ing that all Co-isomorphisms on certain semigroups do induce isomorphisms on the
semilattices of idempotents.

Given that groups themselves are not in general determined by their lattices of
subgroups, it is also not surprising that the very strongest results are obtained when
the inverse semigroups are aperiodic (also known as combinatorial). For instance
it is shown that any Co-isomorphism of a finite aperiodic inverse semigroup that
induces an isomorphism on its semilattice of idempotents is induced by a unique
semigroup isomorphism. In combination with the main theorem of Part I, then, all
Co-isomorphisms of such semigroups may be found in a manner similar to that for
semilattices.

These and other results require as hypotheses various generalizations of the
“archimedean” property. The most important is the “pseudo-archimedean” prop-
erty; an inverse semigroup S has this property if no idempotent is below all the
idempotents of a free monogenic or a bicyclic inverse subsemigroup of S. Clearly
every group bound inverse semigroup has this property, as does every free or mono-
genic inverse semigroup. For any pseudo-archimedean inverse semigroup that is
not group bound, every Co-isomorphism necessarily induces an isomorphism on its
semilattice of idempotents. It follows, for instance, that every free inverse semi-
group is strictly determined by its lattice of convex inverse subsemigroups.

Along the way, we make a detailed study of various related “archimedean” prop-
erties; we study the operation of forming the convex closure of an inverse subsemi-
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group of an inverse semigroup; and we analyze the sublattice LOI(S) of Co(S)
consisting of the order ideals, an interesting object in its own right.

2. Preliminaries

Since comprehensive background may be found in [3], we sketch only skeletal
material here, including the results needed from that paper. We also refer the
reader to [15] for general information on inverse semigroups, including that on the
natural partial order and semilattice decompositions.

Given an inverse semigroup S, Co(S) denotes the lattice consisting of those
inverse subsemigroups that are convex with respect to the natural partial order.
It is easily seen [3, Proposition 1.1] that an inverse subsemigroup of S is convex
if and only if its semilattice of idempotents is convex in Eg. The ordering on
Co (S) is just set-theoretic inclusion. If A, B € Co(S), then their meet is AN B
and their join is denoted A ¢ B; it is the convex closure of their join AV B in the
lattice £(S) of all inverse subsemigroups. If X C S, then (X) denotes the inverse
subsemigroup generated by X and (X)) its convex closure, that is, the convex
inverse subsemigroup that it generates. The following elementary result from [3]
will find continual use, generally without specific reference.

Result 2.1. If X is a subset of the inverse semigroup S, then (X)) is the union
of the intervals [a,b], a,b € (X), a <b.

A type of convex inverse subsemigroup that frequently occurs is the order ideal,
one that contains any element below one of its members. An inverse subsemigroup
of S is an order ideal if and only if its idempotents form an ideal of E [3, Proposition
1.1]; it is full if it contains the semilattice of idempotents Eg of S, in which case
it is easily seen to be an order ideal. Denote by LOI(S) and LF'(S) the complete
lattices of order ideals and full inverse subsemigroups, respectively. The lattice
LOI(S) will be studied in depth in §4, where it will be shown that it is a sublattice
of Co (S). Its sublattice LF(S) has been studied in depth elsewhere (e.g. [8]).

A Co-isomorphism of inverse semigroups is an isomorphism between their lat-
tices of convex inverse subsemigroups. A bijection : S — T between two inverse
semigroups induces a Co -isomorphism if setting A© = A0, for all A € Co(S5), de-
fines an isomorphism Co (S) — Co(T'). We say that S is determined by Co (S) if
whenever there is an isomorphism ®: Co (S) — Co (T) then T is isomorphic to S;
and we say S is strictly determined by Co (S) if there is, in addition, an isomorphism
of S on T that induces .

Suppose S and T are inverse semigroups and ®: Co (S) — Co (T is an isomor-
phism. The atoms of Co (S) are the singleton subsets {e} = {(e)),e € Fg, and like-
wise for Co (T"). Hence the rule ((€))® = {(e¢)) determines a bijection ¢: Eg — Er.
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Moreover, since Eg and Er are the joins of the atoms of Co (S) and Co (T') respec-
tively, Es® = Ep and so ® restricts to a Co-isomorphism between the semilattices
ES and ET.

The main theorem of [3] is the following, which in essence reduces the study
of Co-isomorphisms to those with the property that the induced bijection, just
defined, is an isomorphism.

Result 2.2. Let K be any nontrivial chain and let {Sy : k € K} be any disjoint
family of inverse semigroups, each with least idempotent. Let S be the inverse
semigroup formed by the strong semilattice construction [K; Sk, wy,1] where, for k >
l, wr; maps Sy to the least idempotent of Sj.

Let K' be a chain dual to K, having dual isomorphism ¢rx: K — K', let
{Tyw : k' € K'} be a disjoint family of inverse semigroups with least idempotent
and, for each k € K, let Oy be an isomorphism of Co(Sk) upon Co(Tke,) that
induces an isomorphism ¢y of Eg, upon Er,, . Let T be the inverse semigroup
formed by the strong semilattice construction [K'; Ty, wy, 1] where, forl" > k', wy, ;.
maps Ty onto the least idempotent of Ty .

Then there is a unique isomorphism ®: Co (S) — Co (T) that restricts to @y on
Co (Sk), for each k € K; the induced bijection Es — Er is not an isomorphism.

Conversely, any Co -isomorphism between inverse semigroups that does not in-
duce an isomorphism between their semilattices is found in this way.

Given an arbitrary inverse semigroup S, there may or may not exist a semilattice
decomposition of the type described in the theorem. When none exists, every Co-
isomorphism induces an isomorphism on Eg. When such decompositions do exist,
they are characterized [3, Corollary 3.13] in terms of ‘invertible ideals’ of S, which
are in fact certain totally ordered ideals of Eg. Since we shall not need the details
of this characterization here, we refer the reader there for further information,
including some applications (in Section 4 thereof).

In the case that S is a semilattice, in the event that ® induces an isomorphism
on FEg it obviously determines S up to isomorphism. Thus the theorem simpli-
fies significantly; see [3, Corollary 5.1]. For yet another alternative viewpoint on
this theorem, which also clarifies the reduction to the case where ® induces an
isomorphism on Eg, see [3, Theorem 3.15].

Two keys to the proof of Result 2.2, [3, Propositions 3.4 and 3.5], are combined
in the following. The second of these is the starting point for our investigations
in §7.

Result 2.3. Let ® be a Co-isomorphism of S on T, inducing ¢: Es — Ep, and
let a € S. Then ¢ restricts to an isomorphism on Egy .

If (A) aa™! > a=ta, then there exists b € {(a)® such that bb~! = (aa=1)¢p >
(@ ta)p > btb and (b)) is a full inverse subsemigroup of {a)®.
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If (B) aa=||a"ta, there exists b € T, unique up to inverses, such that {(a)® =
(b)), bb~ b6 and {bb~ ', b0} = {(aa™ )¢, (™ a)}.

We briefly review the classification of monogenic inverse semigroups, that is,
those of the form (a). Further details may be found in Part I [3]. Also see [15,
Chapter IX].

According to [15, Theorem IX.3.11], each monogenic inverse semigroup is defined
by exactly one of the following relations, where k, [ are positive integers: (i) a* =
a~ta**; (ii) afa~! = a7 'a¥; (iii) aF = a**!; (iv) a = a. Bach has a type associated
with it. Those in (i) are of type (k,00™) and possess a bicyclic kernel (least ideal);
those in (ii) are of type (k,c0) and have an infinite cyclic group kernel; those in
(iii) are of type (k,!) and have a finite cyclic group kernel; that in (iv) is free. In
the first three cases, if k¥ = 1 then the semigroup itself is bicyclic, infinite cyclic
or finite cyclic, respectively. If k > 2, then it is an extension of its kernel by the
quotient of the free monogenic inverse semigroup modulo the ideal generated by a*
(the quotient being a semigroup of type (k,1)).

A semigroup is group bound, or an epigroup, if some power of each element
belongs to a subgroup. From the classification above, it follow that a monogenic
inverse semigroup is group bound if and only if its semilattice of idempotents is
finite. In general, therefore, an inverse semigroup is group bound if and only if it
contains no free monogenic nor bicyclic inverse subsemigroup. Clearly all periodic
inverse semigroups are group bound.

An inverse semigroup S is completely semisimple if each principal factor is com-
pletely O-simple or is a group. Equivalently, S contains no bicyclic subsemigroup;
S is E-unitary if whenever a > e € Eg then a € Eg.

In Section 4 of [3] it was shown that various properties, including group bound-
edness and complete semisimplicity, are preserved under Co-isomorphisms. The
relevant results will be quoted as needed.

3. Archimedean properties

We consider various versions of the “archimedean” property. The archimedean
property itself will be fundamental to §5. The “pseudo-archimedean” property
appears to be the hypothesis under which our most satisfactory results will be
obtained in §7. The “quasi-archimedean” and “faintly archimedean” properties
appear to be the weakest hypotheses under which the main Co-determinability
results of that section can be proven, bearing in mind that these turn out to be
applications of the results in [11] on isomorphisms between the lattices of all inverse
subsemigroups of two inverse semigroups. The “shortly linked” property is required
to show preservation of complete semisimplicity under convex closure.
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It was shown in [8] (or see §5 below) that every simple inverse semigroup S
whose lattice of full inverse subsemigroups is distributive has the property that
“Fg is archimedean in S”: for every strictly right reqular element a of S (that is,
aa~! > a~'a) every idempotent of S is above a~"a™ for some positive integer n. In
particular, this is true for the bicyclic semigroup. An inverse semigroup S is said
to be archimedean if for every nonidempotent a of S, Es C {(a)7. (This property
was introduced in [1], where the term “generalized archimedean” was used.) Note
that if a lies in a nontrivial subgroup of S, then the requisite property cannot
hold unless that subgroup is contained in the kernel of S. Thus an archimedean
inverse semigroup is either aperiodic or is an ideal extension of a group by such a
semigroup. Since in the bicyclic semigroup every nonidempotent is either strictly
right regular or its inverse has that property, the definitions coincide. Therefore it
is archimedean. In fact, every monogenic inverse semigroup is archimedean [1], but
we shall not need that fact here.

Proposition 3.1. The following are equivalent for an inverse semigroup S':

(1) S is archimedean;

(2) every nonidempotent, convex inverse subsemigroup is an order ideal, that is,
Co(S)=Co(FEs)ULOI(S);

(3) ifa,be S,b<a and a & Es, then b € {a)).

Proof. Suppose (1) holds and let A € Co(S), A € Es. Let a be any nonidempotent
of A. By the archimedean property, Es C (a)T C AT. Hence E4| C A|NAT=A
and by the comments following Result 2.1, A € LOI(S).

By applying (2) to {a)), (3) follows.

Suppose (3) holds, let a € S — Eg and e € Eg. Then ea < a and so ea € ({a))
whence, by Result 2.1, ea > b for some b € (a). Thus e > eaa™' > bb~! € (a). O

Proposition 3.2. The class of archimedean inverse semigroups is closed under
Co -isomorphisms that induce an isomorphism on the semilattice of idempotents,
but not under Co -isomorphisms in general.

Proof. The first statement is evident from (2) of the lemma. Now let S be the
semilattice e < f of inverse semigroups S = (a : a® = a® = e) and Sy = {f},
with S.Sy = S¢S, = {e}. Then S is archimedean. According to Result 2.2,
Co(S) =2 Co(T), where T is obtained from S by dualizing the chain {e, f}, putting
Te = Se, Ty = Sy and T.Ty = {f}. Since f is above no idempotent of (a) in T,
this semigroup is not archimedean. [l

An inverse semigroup S is shortly linked if for any idempotent e of S and any
element a of S such that e < aa™!, the set Fo o = {f € Egy : e < f < aa™ '} is
finite. (S. M. Goberstein introduced this property in a different form, then showed
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it to be equivalent to the above, in [4, Proposition 3].) Many inverse semigroups
turn out to be shortly linked in one of two ways: by virtue of the property that
they contain only finitely many idempotents above any given one, or by virtue of
being group bound (see the comments after the definition of that property). This
property is needed only for one specific application. Namely, in Proposition 4.10,
whence in Corollary 8.6.

Proposition 3.3. (1) An inverse semigroup is shortly linked if and only if no
idempotent is strictly below infinitely many idempotents of any monogenic in-
verse subsemigroup;

(2) FEuvery group bound (and thus every finite) inverse semigroup, every free inverse
semigroup and every monogenic inverse semigroup is shortly linked;

(3) every archimedean inverse semigroup is shortly linked.

Proof. (1) Let S be an inverse semigroup and e € Eg, a € S. Since every idempo-
tent of (a) is below either aa™! or a™ta, {f € E(q) 1 e < f} = F.qUF, ,-1, from
which the stated equivalence is clear.

(2) By [14] every free inverse semigroup S is “finite J-above”, that is, for any
x € S there are only finitely many elements y such that SyS C SzS. Hence no
idempotent can be strictly below infinitely many others. A similar argument applies
to each monogenic inverse semigroup.

(3) This is immediate from the definition and the fact that every monogenic
inverse semigroup is shortly linked. O

An inverse semigroup S is pseudo-archimedean if no idempotent of S is strictly
below every idempotent of a free monogenic or bicyclic inverse subsemigroup. Since
neither of these types of semigroups possesses a least idempotent, the qualification
“strictly” in the definition is redundant. In view of the discussion of monogenic
inverse semigroups in §1, we may replace “free monogenic or bicyclic inverse sub-
semigroup” in the definition by “monogenic inverse semigroup with infinitely many
idempotents”. Clearly every group bound inverse semigroup is pseudo-archimedean
and, indeed, the definition of the latter is nontrivial only for semigroups that are
not group bound.

Proposition 3.4. (1) Every shortly linked inverse semigroup is pseudo-archime-
dean;

(2) every group bound, and thus every periodic and every finite inverse semigroup,
is pseudo-archimedean;

(3) every free inverse semigroup and monogenic inverse semigroup is pseudo-arch-
imedean;
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(4) [3, Corollary 4.3] any Co -isomorphism of a pseudo-archimedean inverse semi-
group that is not group bound induces an isomorphism on its semilattice of
idempotents;

(5) [3, Proposition 4.8] the property of being pseudo-archimedean is preserved by
all Co -isomorphisms.

Proof. (1) This is immediate from Proposition 3.3(1). (2) This was noted above.
(3) This follows from (1) and Proposition 3.3. O

If an idempotent is below infinitely many idempotents of a bicyclic subsemigroup
then it must be below all of them. However, this is not obviously so for the free
monogenic inverse subsemigroups and indeed Example 4.11 shows that the pseudo-
archimedean property is strictly weaker than that of being shortly linked.

In [11], the second author introduced two “archimedean-like” properties as use-
ful hypotheses under which to prove determinability of inverse semigroups under
L-isomorphisms. An inverse semigroup S is faintly archimedean if whenever an
idempotent e of S is strictly below every idempotent of a bicyclic or free monogenic
inverse subsemigroup (a), then e < a. Clearly, every pseudo-archimedean inverse
semigroup has this property. For E-unitary inverse semigroups the two properties
are equivalent. However, adjoining a zero to a free monogenic inverse semigroup
yields a faintly archimedean inverse semigroup that is not pseudo-archimedean.
Similarly to the situation for the pseudo-archimedean property, S is faintly archim-
edean if and only if whenever e is below every idempotent of (a), where E, is
infinite, then e < a.

While this property will be an adequate hypothesis in the aperiodic case, it needs
to be strengthened slightly to cover the general situation. Let Ng denote the set of
elements of a semigroup S that belong to no subgroup. An inverse semigroup S is
quasi-archimedean if whenever an idempotent e is (not necessarily strictly) below
every idempotent of (a), where a € Ng, then e < a.

Result 3.5. [11, Proposition 3.3] The following are equivalent for an inverse semi-
group S':

(1) S is quasi-archimedean;
(2) ifa € Ng, b < a and bb~! is below every idempotent of (a), then b € Es;
(3) S is faintly archimedean and (a) is aperiodic for each a € Ng.

Corollary 3.6. An aperiodic inverse semigroup is quasi-archimedean if and only if
it is faintly archimedean. An E-unitary inverse semigroup S is quasi-archimedean
if and only if it is pseudo-archimedean and every element of Ng has infinitely many
idempotents.
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Proof. The first statement is clear from the above result. The second follows from
the facts that for E-unitary inverse semigroups, the faintly archimedean and pseudo-
archimedean properties are equivalent, as observed earlier, and that if a € Ng then
(a) is aperiodic if and only if it has infinitely many idempotents. O

The usefulness of the pseudo-archimedean property lies largely in the preserva-
tion properties mentioned earlier. The following example and those in the next
section show that many of these preservation properties do not hold for faintly
archimedean or quasi-archimedean inverse semigroups.

Example 3.7. A Co-isomorphism of a faintly archimedean, or quasi-archimedean,
inverse semigroup that is not group bound need not induce an isomorphism on its
semilattice of idempotents.

Proof. Let S be the semilattice e < f of inverse semigroups S. = (a)?, where (a)
has infinitely many idempotents and e is the zero, and Sy = {f}, with S.S; =
S¢Se = {e}. Then S is faintly archimedean and quasi-archimedean and Result 2.2
applies to yield the requisite example. (I

For completely semisimple inverse semigroups if follows straightforwardly from
Result 2.3(B) and [3, Proposition 4.5(a)] that the faintly archimedean and quasi-
archimedean properties are preserved by Co-isomorphisms that do induce an iso-
morphism on the semilattice of idempotents. This is in fact true for all inverse semi-
groups but the proof requires development of machinery that will not be needed.

4. Properties preserved by convex closure

Suppose the inverse semigroup 7T is the convex closure of an inverse subsemigroup
S, that is, T = ((S)). Which properties of S are preserved by 7?7 We collect some
results that are relevant to the main results of the paper. We first need a useful
extension property, followed by a technical result.

Result 4.1. [3, Proposition 3.1] Let ® be a Co -isomorphism of S on T, inducing
¢: Es — Ep. For any inverse subsemigroup U of S, Eqyy = (Ev)). If ¢ is an
isomorphism on Ey, then it is also an isomorphism on Eyy .

Result 4.2. [3, Lemma 3.2(1)] Let S be an inverse semigroup, U any inverse
subsemigroup of S and e € Ey. Then the D-class of e in (U)) is contained in U.

Recall [5, Lemma 5.7.1] that an inverse semigroup S is simple if and only if for
any idempotents g, h of S there is an idempotent [ of S such that [ < h,[Dg.

Proposition 4.3. The convex closure of a simple inverse semigroup is again sim-
ple. However, the convex closure of a bisimple inverse semigroup need not be bisim-
ple.
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Proof. To prove the first statement, suppose T = ((S)), where S is simple. Let
e, f € Ep. There exist g,h € FEg, g < f,h > e. By simplicity of S, there exists
k € Eg such that k < g and kDh; let x € Ry N Lg. Then eDz lex <k < g < f,
as required.

For the second statement, we use the context of §6. Within the bicyclic semigroup
B = (b), each subsemigroup By = ((b?)) is the convex closure of the (bicyclic and
thus bisimple) subsemigroup (b%) but is not bisimple for d > 2. (See, for example,
[5, Chapter 5].) O

Proposition 4.4. The convex closure of an E-unitary inverse semigroup is again
E-unitary. The convex closure of an inverse semigroup with a least idempotent
has that idempotent as its own least idempotent. The convex closure of an inverse
semigroup with zero has that element as its own zero.

Proof. To prove the first statement, suppose T = ((S)), where S is E-unitary.
Suppose t € T, e € Ey with t > e. Then t < s for some s € S and e > f for
some f € Eg. Since s > f, s € Eg, whence t € Ep. To prove the second, suppose
T = {(S)), where S has least idempotent e. Let f € Ep. Then f > g for some
g € Eg, so f > e. Next suppose that e is the zero of S. Then T has a group kernel,
with idempotent e, by the previous paragraph. If t € T and tHre then t > s € S,
where necessarily s = ¢, so t = e. That is, e is the zero of T'. O

Our more serious concern is to show that under certain weakened versions of
the archimedean property, aperiodicity and complete semisimplicity are preserved
by convex closure. Examples will show that these properties are not preserved in
general.

Proposition 4.5. The convex closure of an archimedean inverse semigroup is again
archimedean.

Proof. Suppose T = ((S)), where S is archimedean. Let e € Ep and a € T — Er.
Then e > f € Es and a < b € S — Es. Since S is archimedean, f > h € E,.
Writing & as an expression in b, we may deduce that h > k € E,, yielding the
requisite inequality. O

Example 4.6. There is a finite semilattice of (infinite) groups whose convex clo-
sure is neither pseudo-archimedean nor completely semisimple. Hence none of the
properties shortly linked, pseudo-archimedean, quasi-archimedean, faintly archim-
edean, group bound nor completely semisimple is in general preserved by convex
closure.

Proof. Let E be the semilattice comprising the integers under the reverse of the
usual order. Let G be the additive group of integers. Then G acts on E by
n-a =a—n, where a € E,n € G. This action extends to one on the semilattice
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F obtained from F by adjoining both an identity e and a zero f. Let G fix both e
and f. Construct the semidirect product [15, VIL.5.23] F x G, i.e., the set F' x G,
with product (a,m)(b,n) = (a Am-b,m+n). It is an E-unitary inverse semigroup
that is the disjoint union of the subsemidirect products E « G and {e, f} * G. The
latter product is in fact direct, so the associated subsemigroup is a semilattice
of groups and so is shortly linked (and therefore pseudo-archimedean and faintly
archimedean), quasi-archimedean and completely semisimple. Its convex closure is
all of F x G since for any m € F and a € G, (f,a) < (m,a) < (e,a).

Direct calculation shows that the element (0,1) is strictly right regular and so
generates a bicyclic subsemigroup. Hence F * G is not completely semisimple,
whence not group bound. The idempotent (f,0) is below every idempotent of
E + G and hence below all the idempotents of ((0,1)). It follows that F' « G is not
pseudo-archimedean (thus not shortly linked and, since the semigroup is E-unitary,
neither faintly archimedean nor quasi-archimedean, by Corollary 3.6). (]

Proposition 4.7. The order ideal generated by an aperiodic and group bound
(equivalently, aperiodic and periodic) inverse semigroup is again aperiodic and
group bound. Hence the same is true for the convex closure.

Proof. We first observe that in any inverse semigroup 7T, the set A = {a € T :
a™*t! = g™ for some n} satisfies A| = A, (although since it need not be closed under
multiplication, it need not be an order ideal of T'.) For if a is such an element and
b < a then since a™ is an idempotent, both 4" *! and b™ are idempotents, necessarily
H-related and therefore equal. But an inverse semigroup is aperiodic and group
bound if and only if every element satisfies "™ = a™ for some n. Hence if S is
such an inverse subsemigroup of T', S C A and the order ideal S| that it generates
is contained in A and so is of the same type. Since ((S)) C S|, the same is true for
its convex closure. O

Proposition 4.8. The convex closure of an aperiodic, pseudo-archimedean inverse
semigroup is again aperiodic and pseudo-archimedean.

Proof. Suppose S is aperiodic and pseudo-archimedean. Let a € T = ((S)) and
e € Ep. Then e > f for some f € Fg and a < b for some b € S. Suppose that
e is below every idempotent of (a) < T, where E, is infinite. Thus f is below
every idempotent of (a) and every idempotent of (a) is below the corresponding
idempotent of (b). If E) were finite then, by aperiodicity, the group kernel of (b)
would be trivial, that is, b"*! = b" for some positive integer n. By the proof of
the previous proposition, a®*! = a™ and so E 4y would also be finite. Hence E )
is also infinite, contradicting the pseudo-archimedean property for S and thus T is
pseudo-archimedean. Moreover, in the particular case that e = aa~! = a~'a, from
a™t! = a™ it follows that a € Er. Hence T is aperiodic. O
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The following example demonstrates limits to the two previous propositions. In
conjunction with Proposition 3.4 and Example 3.7, it goes some way to justifying
our focus on the pseudo-archimedean property.

Example 4.9. (1) In contrast with the the previous proposition, the convex closure
of an aperiodic, completely semisimple, faintly archimedean inverse semigroup need
retain none of those properties. (2) In contrast with Proposition 4.7, the order
ideal generated by an aperiodic, completely semisimple pseudo-archimedean inverse
semigroup need retain neither of those properties.

Proof. Let U = (a) be a free monogenic inverse semigroup, B = (b) a bicyclic
semigroup and G = (g) any nontrivial cyclic group. Since the maximum group
homomorphic image of B is infinite cyclic, there is a homomorphism from B to G.
Let S be the (retract) ideal extension of G by B that is determined by that ho-
momorphism (see [15, pp46-47 ]), and let T the ideal extension of S by U that is
determined by the obvious homomorphism U — B. Finally, let W = T°.

Then W = (U)), where U is aperiodic, completely semisimple and faintly
archimedean but W has none of these properties (the last failing because the iden-
tity element of G is below every idempotent of U but is not below a). Similarly, W is
the order ideal generated by U, where U is pseudo-archimedean, by Proposition 3.4,
but W is not (since 0 is below every idempotent of U). O

Proposition 4.10. The convex closure of a shortly linked, aperiodic, completely
semisimple inverse semigroup is again completely semisimple.

Proof. Suppose S is shortly linked, aperiodic and completely semisimple, but T' =
{(S) contains a strictly right regular element a, say. Then we may assume that
e =aa"! > f, for some f € Eg, and a < b for some b € S. Since e = a"a~" for
every positive integer n, f is strictly below b™b~"™ for each such n. By hypothesis,
the set of such idempotents is finite. Hence for some n, b”b~" = b?"b~2", that
is, 57" < b™b™™. By complete semisimplicity of S, " lies in a subgroup, with
identity g = 0"b~" = b~"b". In that event, gb € Hy; and a = a"a™"a < gb. But
then gb € Fg, contradicting the aperiodicity of S. O

In each of the two previous propositions, a slight modification of the proof shows
that the hypothesis of aperiodicity may be replaced by finiteness of all subgroups.
Example 4.6 shows that complete semisimplicity is not preserved in general un-
der the shortly linked property. We now construct an example of an aperiodic,
FE-unitary, completely semisimple, pseudo-archimedean inverse semigroup whose
convex closure is no longer completely semisimple. (Thus the need for the slightly
stronger hypothesis ‘shortly linked’ in Proposition 4.10.) Of necessity, therefore, the
example distinguishes the classes of shortly linked and pseudo-archimedean inverse
semigroups. By Proposition 4.8, the convex closure is necessarily aperiodic.
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We shall construct our example as a “McAlister semigroup”, or P-semigroup. We
briefly review this construction and refer the reader to [15, Chapter VII] for further
details and properties. Let X be a partially ordered set, containing a semilattice
Y as an essential ideal (that is, each x € X is above some element of V). Let G
be a group that acts on X by order automorphisms, in such a way that GY = X
and for each ¢ € G, g¥ NY # (. Then the set {(y,9) € Y x G : g7ty € Y}
is an F-unitary inverse semigroup under the operation (y,g)(z,h) = (y A gz, gh).
We follow the traditional notation P(G,X,Y) rather than that of [15]. In this
semigroup the idempotents are the pairs (y,e) (where e is the identity of G). The
inverse of (y, g) is (g7 'y, g~ !). Elements (y, g) and (2, h) are R-related if and only
if y = z; and L-related if and only if g~y = h~'z. Idempotents (y,e),(z,e) are
D-related if and only if z = g~y for some g € G. The natural partial order is given
by (y,9) < (z,h) if and only if y < z and g = h.

Let Z denote the semilattice of integers, under its usual order. Let P¢(Z) be the
semilattice of finite subsets of Z, under the union operation. Put X = {(4,m) €
Pi(Z)x Z : A C [m,00)}. Clearly, X is a subsemilattice of the product semilattice
Pi(Z)x Z. Let Y = {(A,m) € X : m <0}. Again, it is clear that Y is an ideal of
X and if (A, m) € X then, setting n = min(m,0), (4,m) > (A,n) €Y.

Now let G be the group of integers. This group acts automorphically on Z by
translation (k-m = m + k); and thus similarly on Py(Z) and, in fact, on X itself
(k-(A,m) = (A+k,m+k)). That GY = X and gY NY # () for any g € G are
easily verified.

Thus the McAlister semigroup P(G, X,Y) is defined. Interpreting the definition
in this context, its elements are the triples ((A,m), k), where m < 0,k > m and
A C [m,o0). The inverse subsemigroup comprising triples with A = @ is bicyclic,
generated by the strictly right regular element a = ((,0),1). We shall show below
that its complement I is the ideal generated by the idempotent f = (({0},0),0).

This semigroup is not quite the one we need. Let U be a free monogenic inverse
semigroup (b). Then the map b — a (where a was defined above) extends to a
homomorphism U — P(G, X,Y), whose image is the bicyclic subsemigroup (a). Let
T be the (retract) ideal extension of P(G, X,Y’) determined by that homomorphism
(as in the previous example) and let S = U U1, an inverse subsemigroup of T since
I is an ideal. Tt is easy to see that since P(G, X,Y) and U are E-unitary and the
above map is idempotent-pure (that is, maps only idempotents to idempotents), T'
is also E-unitary.

Example 4.11. The inverse semigroup S constructed above is aperiodic, F-unitary,
completely semisimple and pseudo-archimedean. Its convex closure in 7' is not com-
pletely semisimple. Hence S is not shortly linked. The semigroup T is generated
as an ideal by a single nonidempotent.
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Proof. We first show that [ is indeed generated by f, as an ideal. Direct calculation
shows that for n > 0, fa™ = (({0},0),n), whence ™" fa™ = (({—n},—n),0),
and a”f = (({n},0),n), whence a" fa=" = (({n},0),0). Let e = ((A,m),0) be
an idempotent in I, so that A is a nonempty subset of [m,00). If A contains a
nonnegative integer n, then ({n},0) > (A,m) in Y and so a™fa™™ > e; otherwise
A contains —n for some positive integer n, in which case ({—n}, —n) > (A, m) in
Y and so a7 " fa"™ > e. Hence I = I f1I.

The idempotents aa~' and bb~! generate the bicyclic and free monogenic inverse
subsemigroups, respectively, as ideals. From f < aa™! < bb~! it follows that bb~!
generates T itself as an ideal.

We next show that I is completely semisimple. Suppose it contains D-related
idempotents ((4,m),0) > ((B,n),0). Then A C B, m > n and (B,n) =
(A+k, m+k) for some integer k. The latter equation implies that |B| = | A|, whence
by finiteness B = A. Also by finiteness, since B # (), the equation B = A + k then
implies that £ = 0. Hence m = n and the two idempotents are equal. It follows that
I contains no strictly right regular elements, that is, it is completely semisimple.
Since U is also completely semisimple, the same is true of S.

From the description of Green’s relations in P(G,X,Y), it is easily seen that
this semigroup is aperiodic. Since this is true for U as well, it is true for T

We next show that P(G, X,Y) is shortly linked and thus pseudo-archimedean.
Let ((A,m),0) be one of its idempotents. Then ((B,n),0) > ((4,m),0) if and only
if BC A and (0 >)n > m. Hence the principal filter it generates is finite and the
conclusion is immediate.

Now from the properties of the retract extension it follows that if v € U and
z € P(G,X,Y) then u > z if and only if u¢ > x. Hence for any positive integer
n, a~"a™ is not below b=ty +1 Hence no idempotent of (a) is below every
idempotent of U. In view of the first statement of this paragraph and the finiteness
of filters proved above, this remains true for every idempotent of P(G,X,Y). In
combination with the knowledge that P(G,X,Y) and U are separately pseudo-
archimedean, this property holds in all of T'.

Finally, since b > a > fa, where b € U and fa € I, {(S)) = T and since (a)
is bicyclic, T is not completely semisimple. By Proposition 4.10, S is not shortly
linked. (This also follows direct from the construction, since (fa)(fa™!) < aa™! <
b"b~™ for every n, the latter idempotents being distinct.) O

We remark that, while of no direct relevance to this paper, it can be shown
that the inverse semigroup S = U U I constructed above is a concrete realization
of the presentation (b, f : f < b"b~"Vn > 1), from which the motivation for this
construction arose. Similarly, P(G,X,Y) is a realization of (a, f : a ta < aa™1,

f<a%a "Vn >1).
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5. The lattice of order ideals.

Denote by LOI(S) the set of order ideals of an inverse semigroup S. We shall
show in this section that LOI(S) is a sublattice of both Co(S) and L£(S) that
decomposes into an explicitly described subdirect product of the lattice of ideals of
FEs and the lattice of full inverse semigroups of S. We shall then be able to make
use of known results on the latter lattice.

As noted in the preliminaries, an inverse subsemigroup of S is an order ideal if
and only if its semilattice of idempotents is an ideal of Fs. Denote by LI(E) the
set of ideals of any semilattice E. Since the union of two such ideals is again an
ideal, LI(E) is a distributive sublattice of Co (E) (and of L(E)).

Proposition 5.1. Let U,V be order ideals of an inverse semigroup S. Then we
have Eyyy = Ey UEy. Hence UVV € LOI(S), UVV =UoV and LOI(S) is a
sublattice of both L(S) and Co(S). The map U — U N Eg = Ey is a retraction of
LOI(S) upon LI(Eg).

Proof. One inclusion of the first equation is clear. To prove the other, let e € Eyy v,
so that e is a product of elements of U and V. Without loss of generality, suppose
the first term in the product is u € U. The e < uu~! € Ey and so e itself belongs
to Ey, since the latter is an ideal of Fs. Hence equality holds.

Since, as noted above, Fyy U Ey is again an ideal, U V V is therefore again an
order ideal, and hence convex. Thus it is also the join of U and V in Co(S). The
final statements are now immediate. (]

Proposition 5.2. Let U be an order ideal of an inverse semigroup S. Then U V
Es =UUEg. Hence the map U — UU Eg s a retraction of LOI(S) upon LF(S).

Proof. Again, one inclusion is clear. Now suppose a € UV Eg, a ¢ Eg. Then since
a can be expressed as a product of elements of U and idempotents of S, a < u for
some u € U, whence a € U, as required. The final statement is clear. [l

We remark that in [2] there are found necessary and sufficient conditions in order
that each of the above retractions should extend to the whole lattice Co (5).

The product of these two retractions clearly maps LOI(S) into a subdirect prod-
uct of LI(Eg) and LF(S). For A € L(S), let AV ={e € Es: ReNA# {e}}, in
general simply a subset of Fg.

Theorem 5.3. For any inverse semigroup S, the mapping
d: U — (UﬁEs,UUEs)

is an isomorphism of LOI(S) upon the subdirect product of LI(Es) and LF(S)
comprising the pairs (I, A) such that AV C I.
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Proof. Let U € LOI(S) and suppose ¢ € (U U Eg)¥, so that e = aa~! for some
a € UUEg, a#e. Then a € U, whence e € U. Hence (U U Eg)¥ C U N Eg, as
required.

Since for any subset U of S, U = (U U Eg) — Es) U (UN Eg), ® is injective.

Mimicking this decomposition of U, given a pair (I, A) as in the statement of
the theorem we may set U = (A — Eg)UI. Since I C Eg C A it is clear that
UNEg=1and UUEg = A. To show that U is an inverse subsemigroup of S,
suppose a € A — Eg and b € U, so that a,b € A and aa~" € I. Then ab € A and
either ab € A — Eg or ab € Eg and ab < aa™!, whence ab € I, since I is an ideal.
Similarly, ba € U. Since I is a subsemilattice of Eg, U is an inverse subsemigroup
of S. Since I is an ideal of Eg it follows that U is an order ideal of S. [l

Since any lattice of subsets is distributive, and since any distributive lattice
satisfies every lattice identity that is satisfied in any nontrivial lattice, the following
is immediate.

Corollary 5.4. For any inverse semigroup, the lattice of order ideals and its sub-
lattice of full inverse subsemigroups satisfy the same lattice identities.

Inverse semigroups for which L£F(S) is distributive were described in [8]; that
result was generalized to modularity in [6].

6. The bicyclic semigroup

Throughout this section, B denotes the bicyclic semigroup, introduced in Sec-
tion 1 as the monogenic inverse semigroup (a) defined by the relation aa=! > a~'a.
The semilattice Ep is isomorphic to C,,, the chain of nonnegative integers, under
the reverse of the usual order. Any inverse semigroup with this property is called
an w-semigroup. Further properties that will be needed are: B is archimedean
(as noted in §2) and E-unitary, with infinite cyclic maximal group quotient B/c
(o denoting the least group congruence on B). Recall from Result 2.3 that any
Co-isomorphism on B induces an isomorphism on its semilattice of idempotents.

For each positive integer d, let By = ((a?)). By Proposition 3.1, By is an order
ideal; in fact, since a%a~? = aa~", the identity element of B, By is therefore full
in B. It is easily verified that B, is the complete inverse image of the subgroup
((ac)?) of B/o and that it has d D-classes. (See [5] for a more detailed discussion.)

The main result of this section is the following, whose sufficiency will be de-

a=

rived from a more general theorem. Apart from the contrast this theorem provides
with Corollary 8.6, it also contrasts with the fact that the class of simple inverse
semigroups is Co-closed (by [3, Proposition 4.7]).
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Theorem 6.1. An inverse semigroup is Co -isomorphic to a bicyclic semigroup if
and only if it is isomorphic to By for some positive integer d.

We may easily prove necessity. Any inverse semigroup T' Co-isomorphic with
B is simple (by the proposition just cited), aperiodic and again an w-semigroup,
by the fact cited above, that any Co-isomorphism induces an isomorphism on Ep.
But ([5, Proposition 5.7.5]) the semigroups By classify the aperiodic simple inverse
w-semigroups, up to isomorphism.

We shall derive sufficiency from a general theorem on simple LF'-distributive
inverse semigroups, whose definition is evident. All such semigroups were described
by the second author in [8] (the term “distributive” being used for them there),
where the lattices LF(S) were also constructed.

Result 6.2. . A simple inverse semigroup S that is not a group is LI -distributive
if and only if the following hold:

(i) S is aperiodic;

(ii) the idempotents of each D-class of S form a chain;
(iii) S is Archimedean; and
(iv) the group S/o is locally cyclic.

Each of these properties has already been noted for B, so B and all its full inverse
subsemigroups are LF-distributive.

In the following discussion, S will be a simple, £F-distributive inverse semigroup
that is not a group. We should warn of the following oddity: for any group G, the
lattices Co (G) and L(G) each coincide with the lattice obtained by adjoining a zero
— the empty inverse subsemigroup — to the lattice of subgroups; LF(G) is just
the lattice of subgroups itself.

To describe the lattice LF(S) explicitly, we use the map ¥ defined in the pre-
vious section and the map X: £(S) — L(S/o) that is induced by the natural
homomorphism of S upon its maximal group quotient. In general neither is a ho-
momorphism. However, it was shown in [8] that in our situation then (1) ¥ restricts
to a homomorphism of LF(S) upon LI(Es), the sublattice of Co(Eg) consisting
of the ideals, (2) X restricts to a homomorphism of LF(S) upon LF(S/c), the
subgroup lattice of its maximal group quotient, and (3) these two homomorphisms
separate the members of LF(.5).

In any locally cyclic group G, the nontrivial subgroups form a sublattice, denoted
L*(G), of LF(G) and thus of L(G); likewise, the nonempty ideals of any semilattice
E form a sublattice, denoted L£I*(E), of the lattice LI(E) of all ideals. The join
operation in L£I(E) is simply union. The image of the product of ¥ and ¥ was also
determined in [8], as follows.
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Result 6.3. In the context of Result 6.2, the product map W X X is an isomorphism
of LF(S) upon the “contracted direct product” of LI(Es) and L(S/o), i.e., the
direct product of the sublattices LI*(Eg) and L*(S/o) with a zero adjoined.

It follows that the nonidempotent full inverse subsemigroups of such an inverse
semigroup form a sublattice, which we denote LF*(S), isomorphic to the direct
product of LI*(Es) and L*(S/0).

Denote by Co*(S) and LOI*(S) the sets of nonidempotent members of Co (S)
and LOI(S), respectively (thereby excluding the empty subsemigroup). According
to Proposition 3.1, the archimedean property implies that Co*(S) = LOT™(5).

Corollary 6.4. In the above context, the map Co(S) — LF(S), given by U —
U U Eg, is a retraction; hence Co*(S) is a sublattice of LOI(S) and of Co(S).

Proof. The first statement follows from the archimedean property. For from the
equality of Co*(S) with LOI*(S) and Proposition 5.2, it follows that U ¢ Eg =
UUEg for all U € Co*(S), but clearly this also holds for the idempotent members
of Co(S). Hence the map is well defined and is a retraction. Now Co*(S) is the
complete inverse image of LF*(.S) which, by Result 6.3, is a sublattice of LF(S). O

Therefore Co (5) is the disjoint union of its sublattices Co (Es) and Co *(S) where,
for F' and U in the respective lattices, F' < U if and only if F' C U N Eg. (Notice
also that LOI(S) is in this instance the disjoint union of LI(Eg) and Co*(S5).)

We may now specialize Theorem 5.3 to Co*(S). It is clear that if U is nonidem-
potent then U N Eg is nonempty and U U Eg is also nonidempotent.

Proposition 6.5. In the above context, the map
P: U — (UﬂEs,UUEs)

is an isomorphism of Co*(S) upon the subdirect product of LI*(Egs) and LF*(S)
comprising the pairs (I, A) such that AV C I.

We may now easily combine this last proposition with Result 6.3 and the remarks
that immediately follow it in order to determine completely the lattice Co*. The
statement can, however, be simplified by recalling that both ¥ and ¥ were actually
defined on all of £(S). For U € Co*(5), (UU Eg)¥ = UV¥; similarly, (U U Eg)% =
Ux.

Proposition 6.6. In the above context, the map U — (U N Eg,U¥,UY) is an
isomorphism of Co*(S) upon the subdirect product of two copies of LI*(Eg) with
L*(S/c) comprising the triples (I, J, K) such that J C I.

Finally, we return to the entire lattice Co(S), using the comments following
Proposition 6.4.



Algebra Universalis December 30, 2002 12:42 1802u F02061 (1802u), pages 1-26 Page 19 Sheet 19 of 26

Vol. 00, 0000 Convex inverse subsemigroups I1 19

Theorem 6.7. Let S be a simple, distributive inverse semigroup. Then Co(S)
is the disjoint union of Co(Eg) and Co*(S), where if the latter is represented by
triples, as in the previous proposition, then for F € Co (Eg) and (I, J, K) € Co*(S),
F<(I,J,K) if and only if F C I.

The theorem may be specialized to obtain an analogous description of LOI(S)
as a disjoint union of LI(Es) and Co*(S).

The following corollary provides the key to the proof of sufficiency for Theo-
rem 6.1.

Corollary 6.8. Let S and T be simple, LF-distributive inverse semigroups that
are not groups. If Es = Er and S/oc 2T /o, then Co(S) = Co(T).

Proof. Suppose £ and x are the respective isomorphisms, inducing lattice isomor-
phisms Z: Co (Eg) — Co(Er) and X : L(S/o) — L(T/o).

First, the restriction of the product map = x Z x X to LI*(Eg) x LI"(Eg) %
L£*(S/0) is an isomorphism upon LI*(E7)x LI* (Er)x L*(T /o) such that if (I, J, K)
is a member of the first product lattice that satisfies J C I, then (IZ,J=, KX)
satisfies J=2 C IZ. In other words, in terms of Proposition 6.6, the restriction
of this map to the appropriate subdirect product is the co-ordinatization of an
isomorphism Co*(S) — Co*(T).

Now take the union of this isomorphism with =. If F < (I, J, K), in terms of
the co-ordinatization of Co (S) given by Theorem 6.7, then FZ < (IZ, JZ, KX),
in terms of the corresponding co-ordinatization of Co(T'). Hence this map is the
co-ordinatization of an isomorphism between the two lattices. (I

The proof of Theorem 6.1 is now easily completed, since for every d, E(By) = Ep
and By/o = ((a0)?) = B/o.

We may also use the bicyclic semigroup to exemplify Theorem 6.7. We may
represent Ep by C,, (representing a~*a* by k), and we may represent B/o by
the additive group of integers in the obvious way. The lattice Co(C,,) is easily
described: each nonempty ideal of C,, is principal and so LI*(C,) = C,; the
remaining nonempty convex subsemilattices are the intervals [m,n], m > n, m,n €
C,; and [m,n] C k| if and only if n > k. The lattice of nontrivial subgroups of the
integers is of course well known, being isomorphic to the set N of natural numbers,
under the reverse of the usual divisibility relation.

Example 6.9. The lattice Co*(B) is isomorphic to the subdirect product of two
copies of C,, with N that comprises those triples (k,1,p) that satisfy | > k. The
lattice Co (B) is the union of Co (C,,) with Co*(B), where if the latter is represented
by triples, then for F' € Co (C,,), with maximum element f, and (k,[,p) € Co*(B),
F < (k,l,p) if and only if f > k.
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The decomposition of LF*(B) was elaborated in [9]; the pair (I,p) € C,, x N
corresponds to the full inverse subsemigroup generated by a~'a!™?. Then it may be
shown that the triple (k,, p) corresponds to the intersection of this subsemigroup
with a=*a* Ba=%aF.

Finally, we note that it would be of interest to further study the convex closures
of bicyclic semigroups. According to Proposition 4.3, any such semigroup is simple,
and in the notation of the last part of the proof of that proposition, any By is the
convex closure of the bicyclic subsemigroup (b%). Theorem 3.2 of [7] exhibits an
inverse semigroup that is the convex closure of a bicyclic subsemigroup but whose
semilattice of idempotents is not a chain.

7. Co- and L-isomorphisms

In conjunction with Result 2.2, the results of this section reduce the problem of
determining the inverse semigroups that are Co-isomorphic to a given completely
semisimple inverse semigroup to the study of those £-isomorphisms that induce an
isomorphism on the semilattices of idempotents. The general theories of Co- and
L-isomorphisms of completely semisimple inverse semigroups are not equivalent,
however, since they in general induce quite different bijections between the semilat-
tices of idempotents. In the next section we shall apply results from [11] on lattice
isomorphims.

We first recall some basic facts about L-isomorphisms between inverse semi-
groups, that is, isomorphisms between their lattices of (all) inverse subsemigroups.

Let ©: £(S) — L(T) be such an isomorphism. Then it induces a bijection
0: S — T in the same way that any Co-isomorphism does: (€)© = (ef). Accord-
ing to [17], the bijections # that induce L-isomorphisms between semilattices are
characterized by the property that for e, f € Fg, ¢l|f if and only if ef||f6, in which
case (ef)0 = e0f0.

Of course an isomorphism between two semilattices (more generally, two inverse
semigroups) induces both Co- and L-isomorphisms between them. That this rarely
happens for bijections in general is demonstrated by the following result ([3, The-
orem 4.9]).

Proposition 7.1. Let S and T be inverse semigroups and suppose ¢: Es — Ep is a
bijection that is not an isomorphism. If ¢ induces both an isomorphism ®: Co (S) —
Co(T) and an isomorphism ©: L(S) — L(T) then Eg is a chain and ¢ is a dual
isomorphism. In that event, S and T are chains of groups, with collapsing structure
morphisms.

Theorem 7.2. Let S be an inverse semigroup and © an L-isomorphism from S to
an inverse semigroup T that induces an isomorphism on Eg. Then the restriction
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of © to the convex inverse subsemigroups of S induces a Co -isomorphism from S
toT.

Proof. By symmetry, we need only show that if A € £(S) is convex then so is AO.
But according to [3, Proposition 1.1], an inverse subsemigroup is convex if and only
if its semilattice of idempotents is convex. Since F g = F 40, the result is then
clear from the fact that 0 is an isomorphism. (I

That the converse fails in general follows from the following facts: there is a
Co-isomorphism between the bicyclic semigroup and each aperiodic, simple inverse
w-semigroup By with d D-classes (by Theorem 6.1), but there is no £-isomorphism
between them since the bicyclic semigroup is strictly determined by its lattice of
inverse semigroups [9]. However, removing such semigroups from consideration
— that is, focusing on completely semisimple inverse semigroups — removes the
impediment, as we now proceed to show.

Let S be a completely semisimple inverse semigroup and suppose ® is an isomor-
phism of Co (S) upon Co (T'), for some inverse semigroup 7. From [3, Proposition
4.6], T is also completely semisimple. Let Ng denote the set of elements of S that
do not belong to a subgroup, and similarly for 7.

By semisimplicity, for each a € Ng, aa~!||a~'a and so according to Result 2.3(B),
there is a unique element b of N7 such that (a))® = (b)) and bb~! = (aa=!)¢ (from
which b71b = (a'a)¢ follows). Set b = ag, so that b=! = a~1¢.

Proposition 7.3. In the above context, there is a unique bijection ¢: Eg U Ng —
Er U Nr such that for all a € Es U Ng, (1) (a)® = {(a¢) and (2) (aa"1)¢ =
(ag)(ap)~! and (a=ta)p = (ap)~t(ap). Property (2) implies that ¢ preserves L
and R. As noted above, a='¢ = (ag)~!.

In the general case, it is clear that a Co-isomorphism ® of S on T induces an
isomorphism L(H,) — L(H¢y) for each e € Eg. We may now prove the converse
of Theorem 7.2 for completely semisimple inverse semigroups.

Theorem 7.4. Let S be a completely semisimple inverse semigroup and ® a Co -
isomorphism from S to an inverse semigroup T that induces an isomorphism on
Eg. Then there exists a unique L-isomorphism © from S to T that restricts to ®
on the convex members of L(S).

Proof. Tt is immediate from Result 4.2 that for any A € £(S), A = {z € {(A) :
zz~! € Ea}. Let
AO = {z € (A)D: zx~ ' € Eac}
where ¢: Es — FE7p is the isomorphism induced by ®.
First we observe that A© is closed under inverses or, equivalently, the definition
is self-dual. If z € AO, then either z 'z = zz~! or & € Ny. In the latter event,
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x = a¢ for some a € Ng, a € ()@~ ! C (A). Since aa™! = (xz1)p~! € Ey,
then by the first paragraph of the proof, a € A, whence a 'a € A and z 7'z =
(a=ta)p € Ead.

Now let z,y € AO. Then z 2y € (A)® and

(a7 ay) (@™ ay) " = (a7 2)(yy ") € Bag,

since ¢ restricting to an isomorphism on Eg, Ea¢ € L(Er). Hence x~lzy € AO
and (zy)~"Y(zy) = (z7twy) Y(z~'ay) € Ea¢, by the previous paragraph. Since
zy € (A)®, zy € AO, again by the previous paragraph, and so A0 € L(T).
Clearly, © respects inclusion.

By symmetry, ¥, given by

BU = {ye (B)d ' :yy~t € Ego '},

maps L£(T') in an inclusion-respecting manner into £(S). It remains only to show
that these maps are mutually inverse. Again by symmetry, only the equation
AOTU = A need be shown, for A € L(S). The left hand side of the equation
comprises those elements y € (AO)®~! such that yy=! € (Ea¢)p~t = E4. Now
for any such y, (y)® C (AO) C (A)P, so that (y) C (A)). By the criterion
given in the first paragraph of the proof, y € A. Hence AOW¥ C A.

To prove the reverse inclusion, let a € A. Then (a)® C (A)®. If a € Ng
then (a)® = (a¢)) and so a¢ € (A)®; also ap(ag)™t = (aa"t)¢ € Ex¢. Hence
ap € AO. By symmetry, a = app~! € AOW. Alternatively, aa™' = a"'a = e,
say, and ((a)) is a subgroup of H.. Then ((a))® is a subgroup of H.ys and so is
contained in AO. Again by symmetry, (a)) = (a))®®~! is contained in AOV¥ and
soa € AOV.

If A is convex to begin with, it is clear that A© = A®.

Now let Q2 be an L-isomorphism from S to T that restricts to ®, inducing
w: Eg — Ep. Since € restricts to ®, w = ¢.

We show first that for all A € L(S), (AQ)) = (AN First, since ((A)) is convex
then so is ((A))€2, by Theorem 7.2. Hence ((AQ)) C (A)Q. Next suppose that
B € Co(T) and contains AQ. Then BQ~! € Co(S) and contains A, so contains
{(A). Thus B contains ((A)){, yielding the reverse inclusion.

Hence AQ = {z € (AQ) : 227! € Eqw} = {x € (A)Q : 2271 € Ex9} = AO,
since 2 agrees with ® on ((A4)). O

In the proofs of Theorems 7.2 and 7.4, it suffices to assume only that ¢ si-
multaneously induces an L-isomorphism and a Co-isomorphism from Eg to Er.
However, according to Proposition 7.1, this rarely occurs outside the hypothesis of
the theorems.
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Corollary 7.5. In the notation of Theorem 7.4,

A0 = (ANNs)oU | J (AN H.).

eeE

Proof. 1t was noted in the proof of the theorem that if a € AN Ng, then a¢p € AO;
and that for each e € E4, (AN H,)® is contained in AO.

To prove the opposite inclusion, let z € AG. If x € Ny then a = z¢~ ! € Ng,
aa”! = (za7 )¢~ € E4,and a € {{a)) = {(z))®~! C ((A)), so a € A by the criterion
in the first paragraph of the proof of the theorem. Otherwise, zz~ ! = 27 'z = eg,
say, e € Ea, and ()@~ C (A) whence (x)®~1 C AN H,, similarly, so that
x € (AN H,)®. O

In [11, Theorem 2.5], a characterization is given of the £- and R-preserving
bijections that induce an L-isomorphism between any two completely semisimple
semigroups. In view of the results of this section, that theorem also serves to
characterize the bijections between such semigroups that induce a Co-isomorphism
between them and restrict to an isomorphism between their semilattices of idempo-
tents. Moreover, it was shown that if the semigroups have the additional property
that each nonaperiodic D-class contains at least two idempotents, then a unique
such bijection exists.

8. Completely semisimple semigroups

In combination with Result 2.2 (as discussed in §1), the two theorems of the
preceding section reduce the study of Co-isomorphisms of completely semisimple
inverse semigroups to the study of their £-isomorphisms. Most of the conclusions
of this section, therefore, call on a combination of results on the latter together with
information from [3] on when Co-isomorphisms necessarily induce isomorphisms on
the semilattices of idempotents.

For nonaperiodic inverse semigroups, it is clear that the lack of determinability
of groups, even up to bijection, requires some sharpening of the hypotheses in order
to obtain results on determinability.

Theorem 8.1. Let S be any completely semisimple, quasi-archimedean inverse
semigroup in which each nonaperiodic D-class contains at least three idempotents,
and let ® be any Co-isomorphism from S to an inverse semigroup T that induces
an isomorphism on Eg. Then ® is induced by a unique isomorphism.

In combination with Result 2.2, therefore, all Co-isomorphisms of such semi-
groups can be explicitly found. In particular, whenever S is pseudo-archimedean
but not group bound, then it is strictly Co -determined.
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Proof. The first statement follows immediately from Theorem 7.4 and [11, Theorem
4.5], the analogous result for lattice isomorphisms. The application of Result 2.2
was discussed in §1. The final statement follows from [3, Corollary 4.3], where it is
shown that any Co-isomorphism of a pseudo-archimedean inverse semigroup that
is not group bound induces an isomorphism on its semilattice of idempotents. [

The second author showed in [11, Example 4.7] that the quasi-archimedean hy-
pothesis is necessary, even for finite inverse semigroups. According to [17], it is
unknown whether Brandt semigroups with exactly two nonzero idempotents are
determined by their £-isomorphisms.

Corollary 8.2. Any nonidempotent completely semisimple inverse semigroup that
is decomposable as a nontrivial free product is strictly determined by its lattice of
conver inverse subsemigroups.

Proof. It was shown in [3] (see the discussion following Corollary 4.2) that every Co-
isomorphism of such an inverse semigroup induces an isomorphism on its semilattice
of idempotents. That every inverse semigroup that is decomposable as a nontrivial
free product is strictly determined by its lattice of inverse subsemigroups was proved
in [12]. O

The results of the preceding section are sharpest when the semigroups are ape-
riodic. In that case it is clear that Fs U Ng = S. If T is Co-isomorphic to S then
T is also aperiodic. Proposition 7.3 then specializes to the following.

Proposition 8.3. Let S be an aperiodic, completely semisimple inverse semigroup
and ®: Co(S) — Co(T) a Co-isomorphism for some inverse semigroup T. Then
there is a unique bijection ¢: S — T that induces ® and preserves L and R.

When S is aperiodic it is also clear that the rule that defines the £-isomorphism
in Corollary 7.5 becomes simply A©® = A¢, that is, O is induced by the same
bijection that is induced by @ itself. We may therefore combine the two main
theorems of the previous section in the following specialization.

Corollary 8.4. Let S and T be aperiodic, completely semisimple inverse semi-
groups. Then there is a Co -isomorphism between them that induces an isomorphism
between their semilattices of idempotents if and only if there is an L-isomorphism
between them with the same property. In that case, each is induced by the same
bijection, namely ¢ defined above.

Our second main theorem is the following. In the context of aperiodicity, the
group bound property is equivalent to periodicity; and the quasi-archimedean and
faintly archimedean properties are also equivalent.
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Theorem 8.5. Let S be a completely semisimple, aperiodic inverse semigroup. If
S is quasi-archimedean, then any Co -isomorphism of S that induces an isomor-
phism on Eg also induces an isomorphism on S itself, namely the bijection ¢ in
Proposition 7.3.

In combination with Result 2.2, therefore, all Co-isomorphisms of such semi-
groups can be explicitly found. In particular, whenever S is pseudo-archimedean
but not periodic, it is strictly Co -determined.

Proof. The first statement is immediate from the corresponding statement for £-
isomorphisms proved in [11, Theorem 4.3].
The second statement follows in the same way as in the previous theorem. [

Corollary 8.6. Every free inverse semigroup and every monogenic inverse Semyi-
group {a : a" Tt = a™) is strictly determined by its lattice of convex inverse sub-
semigroups. In fact, the same is true for inverse semigroups that are the convex
closures of such semigroups.

Proof. We first consider the former statement. It was shown in Proposition 3.4
that all of these semigroups are pseudo-archimedean (and, since aperiodic, there-
fore quasi-archimedean). It was noted earlier that every free inverse semigroup is
completely semisimple and aperiodic. Clearly, no free inverse semigroup is group
bound. Hence the theorem may be applied.

By Result 2.3, any Co-isomorphism of a monogenic inverse semigroup induces
an isomorphism on its idempotents. Hence in the completely semisimple, aperiodic
case, the theorem may be applied once more.

To prove the more general statement, observe that such semigroups are again
aperiodic and pseudo-archimedean, by Proposition 4.8. That the convex closures
are completely semisimple follows from Propositions 3.3 and 4.10. By Result 4.1,
any Co-isomorphism induces an isomorphism on the idempotents. Hence the the-
orem applies once more. (Il

Corollary 8.7. Every Co-isomorphism of a periodic (in particular, finite), aperi-
odic inverse semigroup that induces an isomorphism on its semilattice of idempo-
tents is induced by an inverse semigroup isomorphism. Hence, in combination with
Result 2.2, all Co -isomorphisms of such semigroups may be explicitly found.

Proof. Every periodic inverse semigroup is group bound and so completely semi-
simple and pseudo-archimedean. ([

Goberstein [4, Proposition 9] gave an example of an L-isomorphism of aperiodic,
completely semisimple inverse semigroups such that the induced bijection ¢ is an
isomorphism on the semilattice of idempotents (and preserves £ and R) but is not
an isomorphism. By virtue of Corollary 8.4, ¢ also induces a Co-isomorphism.
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