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Abstract

We generalize to eventually regular (or ‘π-regular’) semigroups the study of the
lattice of full regular subsemigroups of a regular semigroup, which has its most
complete exposition in the case of inverse semigroups. By means of a judicious
definition, it is shown that the full eventually regular subsemigroups of such a
semigroup form a complete lattice LF , which projects onto the lattices of full
regular subsemigroups of its regular principal factors. Our deepest results are
obtained for those eventually regular semigroups in which the regular elements
form a subsemigroup. In that case, LF also projects onto the lattice of full regular
subsemigroups of that regular subsemigroup. In particular, we characterize such
semigroups for which LF is distributive. A much more explicit description is
obtained for the eventually regular semigroups in which the idempotents commute.

1 Introduction

A semigroup S is eventually regular , or π-regular , if for each a ∈ S, an is regular for
some positive integer n; denote by r(a) the least such integer, the regular index of a.
Denote by ES the set of idempotents of S and by RegS the set of regular elements of S.
In general, neither is a subsemigroup. The subsemigroup 〈ES〉 generated by ES is often
called the (idempotent-generated)core of S. By analogy, we term 〈RegS〉 its regularly
generated core. It is known [5] that RegS is a (necessarily regular) subsemigroup if and
only if the product of any two idempotents is regular. In that event S is said to be
strongly eventually regular . (In other contexts, this term has referred to what we shall
term strongly inverse semigroups.) In that case we shall call RegS the regular core of S,
in which event it contains 〈ES〉 as a regular subsemigroup.

If ES is actually a subsemigroup, then RegS is orthodox and we may call S strongly
eventually orthodox . If, further, the idempotents commute, then ES is a semilattice,
RegS is inverse and S is strongly eventually inverse. More generally, an eventually

1



regular semigroup S is eventually inverse if each regular element has a unique inverse.
As usual, the inverse of an element a will then be denoted a−1.

Let S be an eventually regular semigroup. At first sight one might expect to study
the subsemigroups of S that are themselves eventually regular. However, a subsemigroup
of a regular semigroup that is merely eventually regular may be far from regular. (For
instance, in a completely 0-simple semigroup, each non-subgroup element generates a
subsemigroup that is eventually regular.)

The following definition will be more useful: a subsemigroup A of an eventually regular
semigroup S is an eventually regular subsemigroup if A ∩ RegS = RegA. It is clear that
any such subsemigroup is eventually regular, as a semigroup. It is also clear that the
regularly generated core 〈RegS〉 is an eventually regular subsemigroup. Less obviously, we
shall see that so is the idempotent-generated core 〈ES〉. If S is actually regular, then the
eventually regular subsemigroups coincide with the regular ones. For eventually inverse
semigroups, the eventually regular subsemigroups are those that contain the inverse of
each of their regular elements. Such subsemigroups are then eventually inverse.

A subsemigroup A of S is full if it contains ES. Denote by LF(S) the set of all full,
eventually regular subsemigroups of S.

For regular semigroups, K.G. Johnston and the first author [7] proved that LF(S)
is a complete sublattice of the lattice of subsemigroups of S. Note that in a quite
different situation, if S is a nil semigroup (that is, S has a zero element and some power
of each element is 0) then S is certainly strongly eventually inverse, but in this case
LF(S) coincides with the lattice of all subsemigroups of S. For general properties of
subsemigroup lattices of semigroups, see the survey [12]. In [12, Corollary 5.7.3], it is
shown that the subsemigroup lattice of a nil semigroup S is distributive if and only if for
any a, b ∈ S, ab ∈ 〈a〉 ∪ 〈b〉. The semigroups for which the subsemigroup lattice forms a
chain are determined in [12, Theorem 6.8].

The theory of the lattice LF is furthest developed in the case of inverse semigroups
(see, for instance, the survey [11]).

In a series of papers (for example [13], [14], [15]), the second author has investigated
the lattices of eventually inverse subsemigroups of eventually inverse semigroups. Some
of the results in the final section of the current paper also appear in the last of the cited
papers. We extend techniques from those sources and from the cited works on the lattices
of full regular subsemigroups of regular semigroups.

We now extend the results of Johnston and Jones [7] to eventually regular semigroups.
The following preliminaries generalize the preliminary results of that paper.

LEMMA 1.1 (c.f. [7, Lemma 1.1]) Let S be any eventually regular semigroup and let
A be any full subsemigroup of S. If a ∈ RegA then A contains every inverse of a in S.
Hence for any family Ai, i ∈ I, of full subsemigroups of S, ∩i∈IRegAi = Reg ∩i∈I Ai.
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Proof. Let a′ be an inverse of a in A and let b be any inverse of a in S. Then
b = bab = (ba)a′(ab) ∈ A. The second statement is now clear.

COROLLARY 1.2 Let S be any eventually regular semigroup. Then the set LF(S) is
closed under arbitrary intersections and therefore forms a complete lattice.

Proof. Reg ∩i∈I Ai = ∩i∈IRegAi = ∩i∈I(Ai ∩ RegS) = ∩i∈IAi ∩ RegS.

We shall use the notation ≺ X � to denote the full eventually regular subsemigroup
of S generated by a subset X, and 〈X〉 to denote the subsemigroup that X generates.

RESULT 1.3 [5, Lemma 1], c.f. [7, Result 1.2]. Let S be any semigroup, a1, a2, . . . , an ∈
S and a = a1a2 · · · an. Suppose a′ ∈ V (a). For each i = 1, 2, . . . , n, put ei = ai . . . ana

′a1 . . . ai−1

and āi = eiai. Then each ei ∈ ES, each āiDa and a = ā1ā2 · · · ān. Further, if any ai is
idempotent, then so is āi.

COROLLARY 1.4 Let S be any eventually regular semigroup. Then the lattice LF(S)
is a complete sublattice of the lattice of all subsemigroups of S. That is, if Ai ∈ LF(S), i ∈
I, then

∨
i∈I Ai ∩ RegS = Reg

∨
i∈I Ai and their join

∨
i∈I Ai, as subsemigroups, belongs

to LF(S).
It follows that the subsemigroup 〈ES〉 of S generated by ES is the least element of

LF(S).

Proof Clearly
∨

i∈I Ai is full. Suppose a ∈ ∨
i∈I Ai ∩ RegS. Then a = a1a2 · · · an,

where each ak belongs to some Aik . In fact, by the preceding result, since each Ai is full,
each ak may be assumed to belong to the regular D-class Da. Hence each ak is regular
in S whence, by hypothesis, has an inverse a′k in Aik . Now according to [7, Result 1.3],
we may write any inverse a′ of a in the form (a′a)a′nena

′
n−1en−1 · · · a′1e1, in the notation

of the preceding result. Hence a′ ∈ ∨
i∈I Ai, as required.

The final statement follows, since 〈ES〉 is the subsemigroup join of the eventually
regular subsemigroups {e}, e ∈ ES.

That the subsemigroup generated by the idempotents of an eventually regular semi-
group is again eventually regular was first proven by Easdown [3, Theorem 7] in a similar
fashion.

Result 1.3 considered products that yield regular elements of S. When a product is
irregular, two distinct situations may occur for semigroups in general: the product may
lie in a J -class that consists entirely of irregular elements, or in one that contains both
irregular and regular elements. We now show that the latter situation cannot occur in
eventually regular semigroups. We may therefore classify J -classes as either irregular or
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regular . A slightly less general statement appears in [1, Theorem 2]; M. Ciric̆ (private
communication) has sent us a proof of the general statement. We include a proof for
completeness.

PROPOSITION 1.5 Let S be an eventually regular semigroup and let J be a J -class
of S that contains an idempotent. Then every element of J is regular. Equivalently, any
0-simple eventually regular semigroup is regular.

Proof. We observe first that if e ∈ ES ∩ J and x ∈ J , there exists an idempotent
f ∈ J such that x = fx. For we may write x = set, e = uxv, for some s, t, u, v ∈ S1

with, without loss of generality, s = se. Then x = (su)nx(vt)n for every positive integer
n. Choose n so that (su)n ∈ RegS and let f ∈ ES ∩ R(su)n . Then x = fx and, since
s = se, s ∈ J , whence f ∈ J .

Now we may write f = axb for some a, b ∈ S1, so that x = fx = axbx. Then for any
positive integer n, x = anx(bx)n and so xL(bx)n. Since some power of bx is regular, so is
x.

To prove the second statement, we observe first that any 0-simple eventually regular
semigroup S contains a nonzero regular element. For since such a semigroup is not null,
there exist nonzero elements a, b such that ab 6= 0 and then since aJ ab, a = s(ab)t for
some s, t ∈ S1, whence a = sna(bt)n for every positive integer n. By eventual regular-
ity, some power (bt)n, necessarily nonzero, is regular. For any simple eventually regular
semigroup S, S0 is a 0-simple eventually regular semigroup, and so S is again regular.

It is useful to review the concepts of Rees quotient and of principal factors of a
semigroup. If I is an ideal of any semigroup S, S/I is the quotient semigroup by the
congruence ρI = (I × I) ∪ 1S. We may regard S/I as (S − I) ∪ {0}, with the product
of two elements of S − I being their product in S, if it lies in S − I, all other products
being zero. If we also denote by ρI the quotient map S → S/I, then for a ∈ S, aρI = a
if a 6∈ I and aρI = 0 otherwise.

Following [2], the principal factor PF (J) associated with the J -class J of a semigroup
S is the Rees quotient of the principal ideal S1JS1 by the ideal Q(J) = S1JS1 − J . By
convention, if J is minimal, so that Q(J) is empty and S1JS1 = J , then PF (J) = J .
As noted above, if J is not minimal, PF (J) may be regarded as the set J with a zero
adjoined. (The definition used in [7] and in earlier work by the first author varied slightly
from the standard one, in that the zero was adjoined to J even in the case of a minimal
J -class.) It is well known that in any semigroup every principal factor is either null (that
is, all products are zero), 0-simple semigroup or simple (in the case that J is minimal).

COROLLARY 1.6 The principal factors of an eventually regular semigroup are either
null (corresponding to irregular J -classes) or regular.
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Proof. For each J -class of any semigroup, its principal factor is either null, 0-simple
or simple. If S is eventually regular, each principal factor also has that property. The
result now follows from Proposition 1.5.

When a product lies in an irregular J -class of an eventually regular semigroup, it
follows from the nullity of the principal factor that, in contrast with Result 1.3, the
product can never be expressed as a product of elements from that same J -class.

We now study the effects of applying semigroup homomorphisms, in particular Rees
quotients, and of taking ideals of a semigroup, on its lattice of full regular subsemigroups.

If S is an eventually regular semigroup and φ : S → T is a homomorphism upon a
semigroup T , then since regular elements of S are mapped onto regular elements of T ,
the latter semigroup is also eventually regular. Edwards [4] (or see [6, Theorem 1.4.8,
Corollary 1.4.9]) also proved that RegT = (RegS)φ and ET = ESφ. Hence if S is strongly
eventually regular, then so is T , and if S is eventually inverse, then so is T .

PROPOSITION 1.7 Let S and T be eventually regular semigroups and φ : S → T a
surjective homomorphism. The map A → Aφ defines a surjective mapping LF(S) →
LF(T ) that preserves complete joins.

Proof. Let A ∈ LF(S). Clearly, Aφ is a full subsemigroup of T . To prove
Aφ ∈ LF(T ), we modify the proof of [6, Theorem 1.4.8]. Let a ∈ A and suppose c = aφ ∈
RegT , with inverse d. Then cd ∈ ET and cdRc. Let d = bφ, b ∈ S. Now there is an inte-
ger n > 1 such that (ab)n ∈ RegS, with inverse z, say. Then (ab)nz ∈ ES, so (ab)nza ∈ A,
((ab)nza)φ = (cd)n(zφ)c = (cd)(zφ)c = c (since zφ is an inverse of (cd)n = cd, so that
(cd)zφ is an idempotent R-related to c). But ((ab)nza)(b(ab)n−1z)((ab)nza) = (ab)nza,
so (ab)nza ∈ A ∩ RegS = RegA. Thus c ∈ RegAφ. Hence Aφ ∈ LF(T ). Conversely, let
B ∈ LF(T ) and consider Bφ−1, a full subsemigroup of S. Suppose a ∈ Bφ−1 ∩ RegS
and let a′ be an inverse of a. Then a′φ is an inverse of aφ ∈ B ∩ RegT . By Lemma 1.1,
a′φ ∈ B, so a′ ∈ Bφ−1 and Bφ−1 ∈ LF(S). It is clear that the specified map preserves
complete joins.

Let I be an ideal of an eventually regular semigroup S. Observe (c.f. [8, 7]) that
RegS∩I = RegI, from which it follows that I is an eventually regular subsemigroup of S
and that for any A ∈ LF(S), I ∪A ∈ LF(S). In particular, I ∪〈ES〉 is the least member
of LF(S) that contains I. We now investigate how LF(S) is related to LF(S/I) and
LF(I), with several applications in mind.

PROPOSITION 1.8 Let S be an eventually regular semigroup and I any ideal of S.
Then the map A → AρI is a complete lattice homomorphism of LF(S) upon LF(S/I),
which restricts to an isomorphism on the filter [I ∪ 〈ES〉, S], comprising those full, even-
tually regular subsemigroups of S that contain I.
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Proof. According to Proposition 1.7, the specified map is a complete join-homomorphism
of LF(S) upon LF(S/I). We may interpret AρI as (A − I) ∪ {0}. Now let {Ak}k∈K

be a collection of members of LF(S). Let t ∈ ⋂
k∈K(AkρI), so that for each k ∈ K,

t = akρI , for some ak ∈ Ak. If t 6= 0, then all the elements ak are identical, and so belong
to

⋂
k∈K Ak. If t = 0, then t = eρI , for any idempotent e ∈ I. Since each Ak is full,

e ∈ ⋂
k∈K Ak. Thus ρI preserves arbitrary intersections.

Since for any A ∈ LF(S) that contains I, A = I ∪ (A − I), the map is injective on
the filter [I ∪ 〈ES〉, S].

PROPOSITION 1.9 Let S be an eventually regular semigroup and I a regular ideal of
S. Then the map A → A∩ I is a complete lattice homomorphism of LF(S) upon LF(I),
which restricts to an isomorphism on the ideal LF(I ∪ 〈ES〉) of LF(S).

Proof. Clearly the map preserves arbitrary intersections. Now let {Ak}k∈K be a
collection of members of LF(S). Let t ∈ (

∨
k∈K Ak) ∩ I, so that t = t1 · · · tn, for some

tm ∈ Akm , m = 1, . . . , n. Since I is regular, we may apply Result 1.3 to obtain t = t̄1 · · · t̄n,
with each tm ∈ Akm ∩ I, since I is a union of D-classes of S. Thus t ∈ ∨

k∈K(Ak ∩ I). So
the map preserves arbitrary joins.

It also follows from Result 1.3 that I ∩ 〈ES〉 = 〈EI〉. To prove surjectivity, let
B ∈ LF(I) and let B′ = B ∪ 〈ES〉. Then, by the preceding sentence, I ∩ B′ = B.
Suppose b ∈ B and x ∈ 〈ES〉. Applying Result 1.3 yet again, we may write bx = b̄x̄,
where b̄ ∈ B and, since bx ∈ I, x̄ ∈ I ∩ 〈ES〉 = EI , whence bx ∈ B. Hence B′ is a full
subsemigroup of S. Since I is regular, so is B and therefore so is B′, whence it belongs
to LF(S). Thus the homomorphism is indeed surjective.

Finally, since, for any A ∈ LF(I ∪ 〈ES〉), A = (A ∩ I) ∪ 〈ES〉, it is also injective on
that ideal of LF(S).

Example 1.12 below shows that if I is not regular, then the map in this proposition
need be neither a homomorphism nor surjective, even for strongly eventually inverse
semigroups.

COROLLARY 1.10 Let S be any eventually regular semigroup and let I be a regular
ideal of S. Then LF(S) is isomorphic to a subdirect product of the lattices LF(S/I) and
LF(I), and also to a subdirect product of its filter [I∪〈ES〉, S] and its ideal LF(I∪〈ES〉).

We now use the above results to generalize to eventually regular semigroups a principal
result of [7]. If S is eventually regular and J is any J -class of S, then by the paragraph
preceding Proposition 1.8, the sets I(J) = 〈ES〉 ∪ S1JS1 and N(J) = 〈ES〉 ∪ Q(J) are
members of LF(S).
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PROPOSITION 1.11 Let S be an eventually regular semigroup and let J be any reg-
ular J -class of S. Then there is a complete lattice homomorphism of LF(S) upon the
lattice LF(PF (J)), restricting to an isomorphism on the interval [N(J), I(J)].

Proof. Suppose that J is minimal, so that PF (J) = J and N(J) = 〈ES〉. Then J
is regular (since it contains a regular power of each of its elements and Proposition 1.5
applies). Applying Proposition 1.9, the map A → A ∩ J is a complete homomorphism
onto LF(J), restricting to an isomorphism on LF(J∪〈ES〉) = LF(I(J)) = [N(J), I(J)].

Now suppose that J is not minimal. First apply Proposition 1.8 to the ideal Q(J). So
the map A → AρQ(J) is a complete homomorphism of LF(S) upon LF(S/Q(J)). Second,
apply Proposition 1.9 to the ideal S1JS1/Q(J) of S/Q(J). So the map AρQ(J) → AρQ(J)∩
S1JS1/Q(J) is a complete homomorphism of LF(S/Q(J)) upon LF(S1JS1/Q(J). But
S1JS1/Q(J) is simply PF (J), so the composite of the two maps is a complete homo-
morphism of LF(S) upon LF(PF (J)).

Now the first map restricts to an isomorphism on the filter [Q(J) ∪ 〈ES〉, S] =
[N(J), S]. The image of I(J) under that isomorphism is I(J)/Q(J) = S1JS1ρQ(J) ∪
〈ES〉ρQ(J) = S1JS1/Q(J) ∪ 〈ES/Q(J)〉. Thus the image of the interval [N(J), I(J)] is
LF(S1JS1/Q(J) ∪ 〈ES/Q(J)〉). But according to Proposition 1.9, the second map re-
stricts to an isomorphism of this lattice upon LF(S1JS1/Q(J)), as required.

Note that if J is not minimal, then the map in the proof of the proposition is defined
by A → (A ∩ J) ∪ {0}.

EXAMPLE 1.12 There are strongly eventually inverse semigroups that contain irreg-
ular J -classes for which the map of Proposition 1.11 need not be (a) a homomorphism
or (b) surjective.

(a) Let F be the free semigroup on {a, b} and let S be its quotient modulo the ideal
F − {a, b, ab}. Effectively, S = {a, b, ab, 0}, with all products equal to 0 except a · b.
Clearly, RegS = {0}. Since x2 = 0 for all x ∈ S, S is eventually regular, in fact strongly
eventually inverse. Let J = Jab. Let A = {a, 0}, B = {b, 0}, each in LF(S). Then the
image of each in PF (J) is {0}, but the image of A ∨B is {ab, 0}.

(b) To construct this semigroup, we first describe a simple general construction that
is presumably well known. For any set X and subsemigroup T of TX , T acts on X by
x ·α = xα, x ∈ X, α ∈ T . Define a binary operation on S = T ∪X∪{0}, where 0 is a new
element: set all products equal to zero except (a) the products of T and (b) products
x · α, defined by the action. Then it is straightforwardly verified that S is a semigroup
that is an ideal extension of I = X ∪ {0}, a null semigroup, by T . Further, T acts
transitively on X if and only if X consists of a single R-class of S. And if T is regular,
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then RegS = T ∪{0} and S is strongly eventually regular, and strongly eventually inverse
if T is inverse.

Now let X = {xi : i = 1, 2, . . .} be a countably infinite set and let α, β ∈ TX be
defined by xiα = xi+1, i ≥ 1, xiβ = xi−1, i ≥ 2, x1β = x1. Then since αβ = 1X (the
identity map on X) and βα 6= 1X , T = 〈α, β〉 is a bicyclic semigroup, with identity 1X

and idempotents 1X = ε0 > ε1 > ε2 . . ., where εi = βiαi, i > 0.
Clearly, in this case T is inverse and acts transitively on X, so that S is strongly

eventually inverse and X is a single R-class. Its principal factor is essentially just the
null semigroup I itself. Thus LF(PF (X)) is just the lattice of subsemigroups of I. In
particular, it contains the subsemigroup {x1, 0}.

Now consider A =≺ x1 �. Note that A contains x1ε1 = x1βα = x2, so the map
U → (U ∩X)∪{0}, U ∈ LF(S), is not surjective. (In fact, for each i > 0, x1εi = xi+1, so
A = ES ∪ I. Similar calculations reveal that the image of LF(S) under the above map
consists of the subsemigroups of I of the form {xj : j ≥ i}∪ {0}, for each i ≥ 1, together
with {0}.)

Although the general situation certainly warrants study, in order to make use of the
techniques developed for regular and inverse semigroups we focus on the situation in
which RegS is a subsemigroup of S, that is, S is strongly eventually regular.

Before specializing the previous proposition, we make a more direct connection to the
lattice of full regular subsemigroups of the regular core.

PROPOSITION 1.13 Let S be a strongly eventually regular semigroup. Then the map
A → RegA is a complete lattice homomorphism of LF(S) upon its ideal LF(RegS).

Proof. It follows from the argument of Corollary 1.4 that for any Ai ∈ LF(S), i ∈ I,
Reg(

∨
i∈I Ai) =

∨
i∈I(Ai ∩ RegS) =

∨
i∈I RegAi. That arbitrary meets are also preserved

follows from Corollary 1.2.

Now we can apply Proposition 1.11, or the original results of [7], to LF(RegS). Since
a full regular subsemigroup is uniquely determined by its set of intersections with the
J -classes of S, it is now clear that this lattice is isomorphic to a subdirect product of the
lattices of full regular subsemigroups of the principal factors of RegS; each of the latter
is, in turn, isomorphic to an interval sublattice of LF(RegS).

We may in fact proceed from LF(S) to the lattices of full regular subsemigroups of
the regular principal factors in two ways: by applying Proposition 1.11 directly to S, or
by applying Proposition 1.13 first and then applying Proposition 1.11 (or the results of
[7]) to RegS. It is clear that the end result is the same in each case.
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2 Distributivity of LF(S)

We begin this section with two preliminary, general technical lemmas.

LEMMA 2.1 Let S be an eventually regular semigroup and let a be an irregular element
of S. Suppose x ∈≺ a �. If Jx 6≤ Ja, then x ∈ 〈ES〉; if Jx = Ja, then x ∈ 〈ES ∪ {a}〉.

Proof. Put J = Ja. By Proposition 1.5, its principal factor is null (that is, J2∩J = ∅).
Consider A = N(J) ∪ 〈ES ∪ {a}〉: then A is a full subsemigroup of S and we show
that ≺ a �⊆ A. Note that 〈ES ∪ {a}〉 ⊆ I(J), so A ⊆ I(J). Since J ∩ RegS = ∅,
A∩RegS = N(J)∩RegS = RegN(J) ⊆ RegA, so that A ∈ LF(S). Therefore≺ a �⊆ A,
so that ≺ a � ∩J ⊆ 〈ES∪{a}〉. The second statement is immediate, and the first follows
from the analysis above.

COROLLARY 2.2 Let S be an eventually regular semigroup and suppose a and b are
J -related irregular elements of S. If a ∈≺ b �, then either a ∈ 〈ES〉 or a = ebf for
some e, f ∈ 〈ES〉1.

Proof. According to the previous lemma, a ∈ 〈ES ∪ {b}〉. Since PF (Ja) is null, in
any expression for a as a product of idempotents and b’s, at most one b must appear.

THEOREM 2.3 Let S be an eventually regular semigroup. Then LF(S) is distributive
if and only if (i) LF(PF (J)) is distributive for each regular J -class J and (ii) if a
product b1b2 · · · bn is irregular, then b1b2 · · · bn ∈≺ b1 � ∪ ≺ b2 � ∪ · · · ∪ ≺ bn �.

If S is strongly eventually regular, then LF(S) is distributive if and only if (i)
LF(RegS) is distributive and (ii) if a product bc in S is irregular, then bc ∈≺ b �
∪ ≺ c �.

Proof. To prove the first statement, note that (i) follows from distributivity of
LF(S) by Proposition 1.13. To prove (ii), put a = b1b2 · · · bn and J = Ja. Since
a ∈ (≺ b1 � ∨ ≺ b2 � ∨ · · · ∨ ≺ bn �)∩ ≺ a �, by distributivity we obtain

a ∈ (≺ b1 � ∩ ≺ a �) ∨ (≺ b2 � ∩ ≺ a �) ∨ · · · ∨ (≺ bn � ∩ ≺ a �).

We may therefore write a = a1a2 . . . ak, where each term belongs to one of the factors
in the above join. Now by Proposition 1.5, PF (J) is null, so at most one factor belongs
to J . Since each factor is contained within ≺ a � then, applying Lemma 2.1, if Jai

> Ja

for some i, then ai ∈ 〈ES〉. Thus if no factor belongs to J , a ∈ 〈ES〉, which is contained
in every member of LF(S). Otherwise, exactly one factor lies in J and the remaining
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factors are all products of idempotents. Since every ≺ ai � is full, a lies in one of the
terms.

To prove sufficiency, let A, B, C ∈ LF(S). Suppose a ∈ A ∩ (B ∨ C). If a is regular,
then we may apply Proposition 1.11 to obtain a ∈ (A∩B)∨ (A∩C) from distributivity
of LF(PF (J)). Now suppose a is irregular. Then a = a1a2 · · · an, where each ai ∈ B∪C.
By (ii), a ∈≺ ai � for some i, whence a ∈ (A ∩B) ∪ (A ∩ C).

Turning to the second statement of the theorem, by the comments following Propo-
sition 1.13, (i) is equivalent to (i) of the first statement; necessity of (ii) follows from
that of (ii) in the first statement. It remains to show that (ii) in the second state-
ment also implies (ii) in the first. So suppose a = b1b2 · · · bn is irregular. Then either
a ∈≺ b1 � or a ∈≺ b2 · · · bn �. In the latter event, b2 · · · bn must also be irregular,
since RegS is a subsemigroup of S. Thus we may iterate the above argument to obtain
a ∈≺ b1 � ∪ ≺ b2 � ∪ . . .∪ ≺ bn �, as required.

The property that LF(S) be distributive was studied in [7] for certain classes of regu-
lar semigroups, such as completely 0-simple and orthodox semigroups. On the one hand,
since for any idempotent-generated regular semigroup S, LF(S) = {S}, for nonorthodox
semigroups in general only a limited amount of information may be deduced about S
from distributivity of LF(S). On the other hand, for inverse semigroups a complete de-
scription has been provided [9]. Distributivity of LF(S) in the case of eventually inverse
semigroups will be investigated further in later sections.

We also observe that, at another extreme, the second part of the theorem above
applies to nil semigroups. Property (i) is satisfied trivially and (ii) is the same condition
cited in the Introduction.

3 LF(S) a chain

It is clear from Proposition 1.13 that if S is strongly eventually regular and LF(S) is
a chain, then LF(RegS) is also a chain. As above, little may be said in general terms
about this quotient lattice in the non-orthodox case but, using [10], much more specific
results may be obtained in the eventually inverse case (see §5).

In the general case significant restrictions nevertheless ensue for the elements (regular
or irregular) that do not belong to the core 〈ES〉. These follow from a simple observation:
if LF(S) is a chain and a, b are two such “non-core” elements of S, then either a ∈≺ b �
or b ∈≺ a �, in which case either Ja ≤ Jb or vice versa.

We begin with the special case whereby every regular element of S is a product of
idempotents, that is RegS = 〈ES〉. In that case, LF(S) coincides with the lattice of full
subsemigroups of S. In particular, for any irregular element a of S, ≺ a �= 〈ES ∪ {a}〉.
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THEOREM 3.1 Let S be a strongly eventually regular semigroup such that RegS is
idempotent-generated. Then LF(S) is a chain if and only if

(1) the irregular J -classes of S form a chain,

(2) if a, b are irregular and Jb < Ja then b ∈ 〈ES ∪ {a}〉, and

(3) if a, b are irregular and Ja = Jb then either b = eaf or a = ebf , for some e, f ∈
〈ES〉1.

Proof. Necessity follows from the prior results of this section, together with Corol-
lary 2.2. To prove sufficiency, let A, B ∈ LF(S) and suppose A 6⊆ B, with a ∈ A − B.
Necessarily, a is irregular. Let b ∈ B, irregular. By (1), Jb and Ja are comparable. Since
a 6∈ B, Jb > Ja cannot occur, by (2); and if Jb = Ja, the case a = ebf in (3) is ruled out
similarly, leaving b = eaf ∈ A. Finally, if Jb < Ja, then b ∈ A, by (2). Hence B ⊂ A.

The irregular J -classes need not be trivial in the situation just considered. In the
following example, not only is RegS idempotent-generated, it is actually idempotent,
that is, RegS is a band. (We shall show in the next section that such examples cannot
occur in the strongly eventually inverse case.)

EXAMPLE 3.2 Let S = {e, f, a, b, 0}, with multiplication such that {e, f} is a right
zero semigroup, ae = be = b, af = bf = a and all other products are 0. It is routinely
verified that S is a semigroup; since a2 = b2 = 0, S is eventually regular; and RegS = ES.
The only irregular J -class is {a, b}. The conditions of the proposition are then easily
verified. Of course it is clear that LF(S) = {ES, S}.

We now turn to the situation in which RegS is not idempotent-generated: let RNCS
denote the ideal generated by the set RegS − 〈ES〉, comprising its regular, “non-core”
elements.

LEMMA 3.3 Let S be a strongly eventually regular semigroup with the property that
for any regular, non-core element a and any irregular element b, a ∈≺ b �. If RNCS is
nonempty, then it consists entirely of regular elements. In particular, this holds whenever
LF(S) is a chain.

Proof. Let b ∈ RNCS: then Jb ≤ Ja for some regular, non-core a ∈ S. Suppose
b is irregular. By assumption, a ∈≺ b � and so, by Lemma 2.1, Ja = Jb. But that
contradicts Proposition 1.5.
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PROPOSITION 3.4 Let S be a strongly eventually regular semigroup that contains
regular non-core elements. Suppose RNCS is regular. The map A → A ∩ RNCS is a
complete lattice homomorphism of LF(S) upon LF(RNCS), which restricts to an iso-
morphism on LF(RegS).

In particular, this is the case whenever LF(S) is a chain (under the original hypoth-
esis). Thus LF(RNCS) is then also a chain.

Proof. Apply Proposition 1.9, with I = RNCS. Note that in this situation,
RNCS ∪ 〈ES〉 = RegS. The last sentence follows from Lemma 3.3.

PROPOSITION 3.5 Let S be a strongly eventually regular semigroup that contains
regular, non-core elements. Then S/RNCS is a strongly eventually regular semigroup
in which Reg(S/RNCS) is idempotent generated. The map A → AρRNCS is a complete
lattice homomorphism of LF(S) upon LF(S/RNCS), which restricts to an isomorphism
on the filter [RNCS ∪ 〈ES〉, S].

If LF(S) is a chain, so is LF(S/RNCS) and this lattice is isomorphic to the filter
[RegS, S] of LF(S).

Proof. To prove that Reg(S/RNCS) is idempotent generated, observe that any
nonzero regular element of S/RNCS may be regarded as a regular element of the set
S − RNCS and so is a product of idempotents in either context. Clearly the element 0
is already idempotent.

To obtain the next assertion, apply Proposition 1.8 with I = RNCS. The final state-
ment again follows from Lemma 3.3.

The following theorem essentially reduces the description of the strongly eventually
regular semigroups S for which LF(S) is a chain to the case of regular semigroups that
are not idempotent-generated (and are generated as ideals by their non-core elements)
and the case described in Theorem 3.1.

THEOREM 3.6 Let S be a strongly eventually regular semigroup such that RegS is not
idempotent-generated. Let RNCS be the ideal generated by its regular non-core elements,
as above. Then LF(S) is a chain if and only if

(1) LF(RNCS) is a chain, where RNCS is a regular semigroup that is not idempotent-
generated;

(2) LF(S/RNCS) is a chain, where Reg(S/RNCS) is idempotent-generated;

(3) for any regular, non-core element a and any irregular element b, a ∈≺ b �.
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Proof. Necessity of (1) was shown in Proposition 3.4. Necessity of (2) was shown in
Proposition 3.5. Necessity of (3) was proven in Lemma 3.3.

To prove the converse, let I = RNCS. By Lemma 3.3, I is regular. Let A, B ∈ LF(S).
Then by (1) and the same comments cited above, A ∩ I and B ∩ I are comparable; and
by Proposition 3.5, A− I and B− I are also comparable. Suppose a ∈ (A∩ I)− (B ∩ I),
so that a is a regular, non-core element of I. Then B ∩ I ⊂ A∩ I. If b ∈ B− I, then b is
irregular, so by (3), a ∈≺ b �⊆ B, a contradiction. Hence B ⊂ A. If b ∈ (B∩I)−(A∩I),
A ⊂ B, similarly. Now suppose A ∩ I = B ∩ I. Then A ⊆ B, or vice versa, depending
on the relationship between AρI and BρI .

4 Distributivity in the strongly eventually inverse

case

We may refine Theorem 2.3 (in particular, its second part) for strongly eventually inverse
semigroups. Recall from the introduction that, in this situation, each eventually regular
subsemigroup is also eventually inverse and LF(S) may therefore be termed the lattice
of full eventually inverse subsemigroups of S. The inverse semigroups S with LF(S)
distributive were determined in [9].

THEOREM 4.1 Let S be a strongly eventually inverse semigroup. If LF(S) is dis-
tributive, then each irregular J -class of S is trivial.

We proceed by a sequence of lemmas.

LEMMA 4.2 Suppose S is any strongly eventually inverse semigroup. If a is irregular,
aJ b and ≺ a �=≺ b �, then a = b.

Proof. From Corollary 2.2, a = ebf, b = gah for some e, f, g, h ∈ ES
1. Then a = eaf

so that, using commutativity of ES
1, b = geafh = egahf = ebf = a.

Example 3.2 shows that this conclusion is not valid in general, even for strongly
eventually orthodox semigroups.

LEMMA 4.3 Suppose S is strongly eventually inverse and LF(S) is distributive. Let
J be an irregular J -class of S. If a ∈ J , b ∈ S, u, v ∈ RegS, a = bu and b = av, then
a = b. Hence the statements a = au, a = auu−1, a = au−1 and a = au−1u are equivalent.
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Proof. Since a = bu, a ∈≺ b � ∨ ≺ u �=≺ b � ∪ ≺ u �, using property (ii) of the
second paragraph of Theorem 2.3. Since a is irregular and ≺ u �⊆ RegS, a ∈≺ b �.
Similarly, b ∈≺ b �. Then a = b, by the previous lemma.

To prove that a = au implies a = auu−1, observe that a = au = (auu−1)u, whence
the first statement applies. The other implications are proved similarly.

LEMMA 4.4 Suppose S is strongly eventually inverse and LF(S) is distributive. Let
J be an irregular J -class of S. If a, b ∈ J and aRb then a = b.

Proof. There exist s, t ∈ S such that a = bs, b = at. Then a = a(ts) = a(ts)n, where
(ts)n ∈ RegS. By Lemma 4.3 a = a(ts)n((ts)n)−1. Now b = at = a(ts)n((ts)n)−1t, where
the element (ts)n((ts)n)−1t is R-related to (ts)n((ts)n)−1 and so is regular. By applying
a similar argument to b, the hypotheses of the first statement of Lemma 4.3 are satisfied,
so a = b.

We may now complete the proof of Theorem 4.1. Suppose a, b ∈ J , so that a =
sbt, b = xay, say. Then a = (sx)a(yt) = (sx)na(yt)n, for some n such that both (sx)n

and (yt)n are regular (using RegS ≤ S). Now a = a((yt)n)−1(yt)n whence, by Lemma 4.3
a = a(yt)n. Then a = a(yt)2n and so aRa(yt)ny. By Lemma 4.4, a = a(yt)ny. Dually,
a = x(sx)na, so b = xay = x(sx)na(yt)ny = a.

As a consequence of Theorem 4.1, LF(S) is not distributive for Example 1.12(b),
even though the corresponding lattice is distributive for each regular principal factor (by
[9]).

5 LF(S) a chain in the strongly eventually inverse

case

We may specialize the general results in two ways. More is known about the inverse
semigroups themselves for which LF(S) is a chain; and from Theorem 4.1, it is known
that each irregular J -class is trivial. Moreover, since the core of S is simply ES itself,
we may replace the term “non-core” by “nonidempotent” everywhere.

The following description of inverse semigroups whose lattice of full inverse subsemi-
groups forms a chain was given by the first author [10].

RESULT 5.1 [10] Let S be an inverse semigroup that is not a semilattice. Then the
lattice LF(S) of full inverse subsemigroups is a chain if and only if:

(1) the nontrivial J -classes of S form a chain;
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(2) each nontrivial J -class is either a cyclic or quasi-cyclic p-group for some prime p,
or has principal factor isomorphic to B5, the five-element aperiodic Brandt semi-
group;

(3) for any nonidempotents a, b with Ja < Jb, there is a nonzero integer n such that
a = aa−1bn.

We first consider strongly eventually inverse semigroups S in which RegS = ES,
that is, every regular element is idempotent, specializing Theorem 3.1 and applying
Theorem 4.1.

COROLLARY 5.2 Let S be a strongly eventually inverse semigroup such that every
regular element is idempotent but S is not a semilattice. Then LF(S) is a chain if and
only if

(1) the nonidempotent J -classes of S are trivial and form a chain;

(2) if a, b are nonidempotents and Jb < Ja then b ∈ 〈ES ∪ {a}〉.

In the case where RegS contains nonidempotents, RNCS is now the ideal generated
by the regular nonidempotents of S. By Lemma 3.3, if LF(S) is a chain then RNCS
is an inverse subsemigroup of the inverse subsemigroup RegS. The specialization of
Theorem 3.6 is then the following.

COROLLARY 5.3 Let S be a strongly eventually inverse semigroup such that RegS is
nonidempotent and S is not itself inverse. Then LF(S) is a chain if and only if

(1) LF(RNCS) is a chain, where RNCS is a nonidempotent inverse semigroup and is
therefore described by Result 5.1;

(2) LF(S/RNCS) is a chain, where Reg(S/RNCS) is a semilattice and S/RNCS is
therefore described by Corollary 5.2;

(3) for any regular nonidempotent a and any nonidempotent b, a ∈≺ b �.

A more succinct description is as follows, combining parts of the preceding corollaries.
Apart from the ramifications of Theorem 4.1, this theorem was found by the last two
authors in [15].

THEOREM 5.4 Let S be a strongly eventually inverse semigroup that is not inverse.
Then LF(S) is a chain if and only if

(1) each irregular J -class of S is trivial;
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(2) each nonidempotent regular J -class, if any, is either a cyclic or quasi-cyclic p-
group for some prime p, or has principal factor isomorphic to B5, the five-element
aperiodic Brandt semigroup;

(3) the nonidempotent J -classes of S form a chain;

(4) for any nonidempotents a, b ∈ S, if Ja < Jb then a ∈≺ b �.

In (4), the relationship between a and b may be made more precise, using the earlier
results, when the two elements are either both regular or both irregular.
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