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Abstract

Semigroups whose congruences form a chain are often termed A -semigroups.
The commutative A-semigroups were determined by Schein and by Tamura.
A natural generalization of commutativity is permutativity: a semigroup is
permutative if it satisfies a non-identity permutational identity. We completely
determine the permutative A-semigroups. It turns out that there are only six
noncommutative examples, each of which has at most three elements.

A semigroup is called permutative if it satisfies an identity zi1xs...x, =
To(1)To(2) " * To(n), fOr some non-identity permutation o of {1,2,...,n}.

A A-semigroup is one whose congruences form a chain. The commutative
A-semigroups were completely determined by B. Schein [12], [13] and T. Tamura
[15]. In conjunction with their result, stated below as Result 1, our main theorem
completely determines the permutative A-semigroups:

Theorem 1. A semigroup S is a permutative A -semigroup if and only if it
satisfies one of the following conditions.

(i) S is a commutative A -semigroup.

(ii) S is isomorphic to either R or R, where R is a two-element right zero
semigroup.

(ili) S is isomorphic to the semigroup Z = {0,e,a}, obtained by adjoining
to a null semigroup {0,a} an idempotent element e that is both a right
identity and a left annihilator for Z .

(iv) S is isomorphic to the dual of a semigroup of type (ii) or (iii).

Let RT denote the semigroup of positive real numbers under addition and
let @ denote the Rees quotient semigroup by the ideal I = [1,00). Similarly, let
R denote the Rees quotient semigroup by the ideal I = (1,00). A subsemigroup
G of Q or R is O-unitary if x,x +y € G,z +y & I together imply y € G.

* The first author’s research was supported by the Hungarian NFSR Grant No. T042481
and No. T043034.
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Result 1. [12], [13], [15] A semigroup S is a commutative A-semigroup if
and only if it satisfies one of the following conditions:

@

(ii

S s isomorphic to a subgroup of a quasicyclic p-group (p is a prime).

S is a cyclic nilpotent semigroup.

S is obtained from a group of type (i) by adjoining a zero element.

)
)
(iii) S is an infinite O-unitary subsemigroup of either Q@ or R.
(iv)
)

(v

S is obtained from a semigroup of type (ii) or (iii) by adjoining an identity
element.

As may also be easily verified directly, it follows from this result that a
semilattice S is a A-semigroup if and only if |S| < 2. Several authors have
considered A-semigroups satisfying various generalizations of commutativity,
for instance in [5], [6], [7], [8], [17].

The outline of the proof of Theorem 1 is as follows.

A key role is played by the archimedean semigroups: those semigroups
S with the property that, for arbitrary elements a,b € S, there are positive
integers i and j such that a' € SbS and ¥ € SaS. In [9], it is proved that
every permutative semigroup is a semilattice of archimedean semigroups, that
is, a Putcha semigroup ([10]). In conjunction with the observation above, on
semilattices, it follows that a permutative A-semigroup is either archimedean or
is a chain of two archimedean semigroups. In the description of the commutative
A-semigroups, those of types (i)-(iii) fall in the former category, (iv) and (v) in
the latter.

A semigroup S is nil if it has a zero element and for each a € S, a™ =0
for some positive integer n; in particular, S is nilpotent if S™ = {0} for some
positive integer n. Clearly, every nil semigroup is archimedean.

A second key role is played by the medial semigroups: those that satisfy
the permutational identity axyb = ayzb. This is evident from the following.

Result 2. [11, Theorem 1] For any permutative semigroup S, there is a posi-
tive integer k such that, for all u,v € S* and all a,b € S, we have uabv = ubav.
In particular, S* is medial.

A semigroup S is called an idempotent semigroup if it satisfies the con-
dition S? = S. From Result 2, it is obvious that every permutative idempotent
semigroup is medial.

In §2, a detailed study of the permutative archimedean case reveals that
any such A-semigroup is medial. An important step is a proof that every
permutative, archimedean semigroup without idempotent element has a non-
trivial group homomorphic image. It is then shown that every permutative
A-semigroup is medial.

In §3 we first prove that every medial, nil A-semigroup is actually com-
mutative. This completes the classification in the archimedean case. In the
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non-archimedean case, we extend some techniques and results of Trotter [17]
on exponential semigroups, in order to complete the proof of Theorem 1. A
semigroup is exponential if it satisfies (xy)™ = z™y™ for all positive integers
n. It is easily verified that every medial semigroup is exponential. Interesting
questions remain unanswered for such A-semigroups (see Section 3).

Other papers on the topic of A-semigroups are by C. Bonzini and A.
Cherubini [1], who determined all finite Putcha A-semigroups, and by T.
Tamura and P.G. Trotter [16], who described all finite inverse A-semigroups
(and some related infinite ones).

The dissertation [4] has often been cited in the literature, often inaccu-
rately. The original version of the current paper contained a critique of the
dissertation which the referee deemed inappropriate, since it has not been pub-
lished. In that light, we have made no further reference to it in the sequel.

1. Generalities on A-semigroups

We will need the following properties of A-semigroups. In addition, we will
make use of Result 1, for instance its description of the A-semigroups that are
abelian groups.

Result 3. [15] Every homomorphic image of a A-semigroup is also a A-
semigroup.

Since with every ideal of a semigroup there is associated its Rees congru-
ence, it is obvious that the ideals of any A-semigroup are totally ordered. For
nil semigroups the converse holds.

Result 4. [8, Theorem 1.56] Let S be a nil semigroup. The following are
equivalent:

(1) S is a A-semigroup;
(2) the ideals of S are totally ordered;
(3) the principal ideals of S are totally ordered.

In that case, each congruence on S is the Rees congruence corresponding
to the ideal consisting of the congruence class of 0.

An ideal A of a semigroup S is said to be dense in S if the equality
relation on S is the only congruence on S whose restriction to A is the equality
relation on A. Observe that every nontrivial ideal of a A-semigroup S is dense,
since any congruence on S whose restriction to such an ideal A is the equality
relation cannot contain the Rees congruence associated with A and therefore
must be contained in it instead.

Result 5. [8, Theorem 1.61], [17] A non-trivial band is a A -semigroup if and
only if it is isomorphic to either R or R' or R®, where R is a two-element
right zero semigroup, or L or L' or L°, where L is a two-element left zero
semigroup, or F', where F' is a two-element semilattice.
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As every semigroup is a semilattice of semilattice indecomposable semi-
groups, Results 3 and 5 imply that a A-semigroup is either semilattice inde-
composable or a semilattice of two semilattice indecomposable semigroups.

Result 6. [8, Theorem 1.57] If a A-semigroup S is a semilattice of a nil
semigroup S1 and an ideal Sy of S then |S1|=1.

Result 7. [15] If a semigroup S contains a proper ideal I and if S is a A-
semigroup then neither S nor I has a non-trivial group homomorphic image.

Result 8. [8, Corollary 1.3] If a A-semigroup S is an ideal extension of a
rectangular group K by a semigroup with zero then K is either a group or a
left zero semigroup or a right zero semigroup.

We note that, in case S = K , S is either a group or a right zero semigroup
or a left zero semigroup. If K is a proper ideal of S then (using also Result 5)
K is either a right zero semigroup or a left zero semigroup.

Result 9. [1, Lemma 1.3] No A-semigroup can contain an ideal that is itself
an ideal extension of a non-trivial right (or left) zero semigroup by a non-trivial
nil semigroup that is finite cyclic.

Proof.  The following argument is significantly simpler than that in the cited
paper. Suppose the A-semigroup S contains as an ideal an extension of the
right zero semigroup R by the nontrivial cyclic nil semigroup A, generated by
a. Then A— R = {a,a?,...,a" "'}, for some n > 1, where a" = z € R.

Let p denote the congruence on S generated by (a,a?). Since S is
a A-semigroup, p must contain the Rees congruence modulo the ideal R.
Suppose r € R, r # z. Then (r,z) € p and so (see [3]) there is a sequence of
elementary transitions leading from r to z. The first such transition has the
form r = sat — sa’t = 1, or r = sa’t — sat = r1, where s,t € S and we
may assume 11 # r, so that at ¢ R and at is therefore a power of a. Now
since r = r?, either r = (rs)(at) or r = (rsa)(at); in either case r € Ra. Since
z = za, z € Ra also, that is, R = Ra. But then, by iteration, R = Ra"™ = {z}.
Hence R cannot be non-trivial. ]

2. Every permutative A-semigroup is medial

We first consider archimedean permutative semigroups in general. The archi-
medean semigroups containing at least one idempotent element are character-
ized in [2]. Namely, a semigroup is archimedean and contains an idempotent
element if and only if it is an ideal extension of a simple semigroup containing
an idempotent element by a nil semigroup. As a simple semigroup S satisfies
52 = S, then by Result 2, every simple permutative semigroup is medial and
thus, by [14], it is a rectangular abelian group (a direct product of a left zero
semigroup, a right zero semigroup and an abelian group). Thus we have the
following result.



NAGY AND JONES OF5

Theorem 2.  Every permutative archimedean semigroup S containing at
least one idempotent element is an ideal extension of a rectangular abelian group
by a nil semigroup.

A subset A of a semigroup S is called a left (right) unitary subset of S if
a,ab € A (a,ba € A) implies b € A for every a,b € S. The subset A is called
a unitary subset of S if it is a left unitary and a right unitary subset of S. A
subset A of a semigroup S is called a reflexive subset of S if ab € A implies
ba € A for every a,b € S.

Lemma 1. If a is an arbitrary element of a permutative semigroup S then
S, ={xeS: azd’ =a" for some positive integers i, j, k}
is the smallest reflexive unitary subsemigroup of S that contains a.

Proof. Let S be a permutative semigroup. Then there is a positive integer
k such that uabv = ubav for every u,v € S* and every a,b € S. Let a be
an arbitrary element of S. It is clear that a € S,. To show that S, is a
subsemigroup of S, let x,y € S, be arbitrary elements. Then a‘za’ = a”
and a™ya™ = a® for some positive integers i, j, h,m,n,t. We can suppose that
i,n > k. Then

a"t = d'zdlaMya" = d'zya? T

and so zy € S,. To show that S, is left unitary, assume x,xy € S, for
some z,y € S. Then a’ra’ = a" and a™zya™ = at for some positive integers
i,7,h,m,n,t. We can suppose that m > j and i,n > k. Then

i+t

't = dla™zya® = dlzamya” = a'zala ™ ya = ot

ya”.
Hence y € S,. We can prove, in a similar way, that y,xy € S, implies = € S, .
Thus S, is an unitary subsemigroup of S. S, is reflexive, because it is unitary
and

(zy)® = z(y2)’y = wy’a’y = wy(yz)ay

holds in S. If B is a unitary subsemigroup of S such that a € B then,
for an arbitrary element x € S, there are positive integers i, 7,k such that
a‘za’ =a* € B. Then z € B and so S, C B. [

The following theorem extends [15, Lemma 11] and [8, Theorem 9.11].
There are also analogues such as [17, Theorem 1.2].

Theorem 3. FEvery permutative archimedean semigroup without idempotent
element has a non-trivial group homomorphic image.

Proof. Let S be a permutative archimedean semigroup without idempotent
element. Assume S, # S for some a € S. Then the principal congruence Pg, of
S defined by the reflexive unitary subsemigroup S, is a group congruence on S
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(see [3]) and so the factor semigroup S/Pg, is a non-trivial group homomorphic
image of S. Suppose S, = S for all @ € S. Then, for any a € §, S,2 = S
and so a € S,2. Then there are positive integers i,j, h such that we have
(a®)'a(a?)? = (a®)", that is, a® 2+ = 2" contradicting the assumption that
S has no idempotent element. [ ]

Next, we deal with permutative, archimedean A-semigroups. First of all,
we prove three lemmas that will be used in the proof of Proposition 1 below.

Lemma 2.  FEvery nilpotent A-semigroup is finite cyclic. FEvery non-nil-
potent, mil permutative A-semigroup is idempotent. Hence any permutative
nil A -semigroup is medial.

Proof.  First, suppose that S is a nonidempotent nil A-semigroup. Let
a,b € S—S?. Since the ideals of S are totally ordered, we may assume without
loss of generality that S'bS! C S'aS'. If b # a then b = sat, where either s
or t is in S, contradicting b ¢ S?. Hence b = a and so S — S? = {a}. Let
k > 1 be an arbitrary integer. If ¢ € Sk=1_ 6% then ¢ = cyeq-- - ¢y for some
¢; €S —82%. Hence ¢ =aF1.

If S is nilpotent, then S = {0} for some least positive integer j and, by
the above, S = {a,a?,...,a’ = 0}. Clearly such a semigroup is medial.

If S is nonidempotent and nil, but non-nilpotent, then S’ # {0} for all
j > 1. Let N be any positive integer such that a® = 0. Let b € S*N — {0},
b= biby---b3y say. Since a ¢ S?, a ¢ S'b;S! unless a = b; for each i. By
the total ordering on ideals of S, for each i, there are elements s;,t; € S' such
that b; = s;at;. Now, for some index i < N, t;8;41 € S™ — {0} for every m >
0, for otherwise, the product b = (s1ati)(szats) - (syaty)--- (sanatan)---
(sznatsy) involves the power a’v. Similarly, an element t;8;41 has the same
property for some index j > 2.

If S is also permutative, then there exists K such that S¥ is medial.
Therefore if N > K, all the terms between t;s;41 and t;s;11 in the product
for b may be commuted, yielding a term a”, contradicting b # 0. Thus the
second statement in the lemma is proven. As noted in §1, every idempotent,
permutative semigroup is medial. ]

Lemma 3. Let S be a permutative semigroup with a dense ideal R that is
a right zero semigroup. If R is nontrivial, then S/R is nilpotent.

Proof.  Suppose S satisfies the identity z122- - Zn = 26(1)To2)  * To(n)»
for some n > 1, where o is a non-trivial permutation. Then o(n) = n
since, otherwise, if r, s are distinct members of R, substituting r = z,, and
5 = Ty(n) (and substituting arbitrarily for any other variables) yields r = s.
Let i be least such that o(j) = j for ¢ < j <mn. Clearly ¢ > 2. Let r € R
and substitute z;_y = r. Then rz; -z, = rwx;---xz, for every r € R,
where w is a non-empty word in {x1,z3,...,2;_2}. It is easy to see that
n = {(a,b) € SxS: (Vr € R) ra = rb} is a congruence on S such that the
restriction 7n|gr of n to R equals idg. As R is a dense ideal of S, we have
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n =ids. As (z; xp,wx; - x,) € n, we get that x; - -z, = wr; - x, is
an identity satisfied in S. Now by choosing for any one of the variables in w
an element of R, it follows that z;---z, € R for all z;,...,z, € S. Thus
Sn=itl € R; equivalently, (S/R)"~ ! = {0}. m

Lemma 4.  No permutative A-semigroup can be an ideal extension of a
nontrivial right (or left) zero semigroup by a non-trivial nil semigroup.

Proof.  Suppose such a semigroup S exists, with non-trivial right zero ideal
R. Then, as observed in §1, R is a dense ideal of S. By the previous lemma,
S/R is nilpotent. Since S/R is also a A-semigroup, it is finite cyclic. Then
Result 9 applies. [ ]

Proposition 1.  Every permutative, archimedean A -semigroup is either (a)
simple, whence a group or a left or right zero semigroup, or (b) nil. In any case,
every such semigroup is medial.

Proof. Let S be such a semigroup. If S is simple then S is idempotent
and so is medial, thus a rectangular group [14] and so is as described, by the
comments following Result 8.

If S is not simple then, by Theorem 3 and Result 7, S contains an
idempotent element. By Theorem 2, Result 8 and the remarks that follow the
latter, S is an ideal extension of a right or left zero semigroup K by a non-
trivial nil semigroup. By Lemma 4, |K| = 1, that is, S is a non-trivial nil
semigroup. The mediality now follows by Lemma 2. ]

Finally, we may consider the general permutative case.

Theorem 4. Every permutative A -semigroup is medial.

Proof. Let S be such a semigroup. The archimedean case is covered by the
preceding result.

We have seen that the alternative case is when S is a semilattice of two
archimedean semigroups S; and Sy with SpS; C Sp. By Result 3, S¢ and so
S1 is an archimedean A-semigroup. It is clear that S; is permutative. Then S
is either a group or a two-element right or left zero semigroup (see also Result 6).
In all three cases S2 NSy # 0 and S; € S?. As the ideals Sy and S? of S are
comparable, we have S? = S. Then, by Result 2, S is a medial semigroup. =

3. Medial A-semigroups

We shall refine the following partial description of the medial A-semigroups
summarized by the first author, decucible from the results of Trotter [17, The-
orems 2.7, 3.5, 3.6].

Result 10. [8, Theorem 9.20] A medial semigroup is a A-semigroup if and
only if it satisfies one of the following conditions.
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(i) S is a A-group (necessarily abelian), or such a group with a zero adjoined.
(ii) S is a nil A-semigroup.

(iii) S is isomorphic to either R or R°, where R is a two-element right zero
semigroup.

(iv) S is isomorphic to the dual of a semigroup of type (iii).
(v) S=NuU{e}, where e =e, N is a nil semigroup and eN,Ne C N .

Trotter [17] called any A-semigroup constructed in the fashion of (v) a
T1 semigroup. (In our earlier notation, N = Sy, {e} = S7.)

We shall first show that every medial, nil A-semigroup is commutative;
and then that every medial, T1 A-semigroup is either commutative or is iso-
morphic to the semigroup Z of Theorem 1 or its dual. In view of Result 10,
the proof of Theorem 1 is then complete.

A semigroup is left commutative if it satisfies the identity abr = bax;
right commutativity is defined dually. Clearly all such semigroups are medial.

Proposition 2.  If S is a left or right commutative, nil A-semigroup then
it 158 commutative.

Proof.  We need only consider the identity abr = bax. Let p = {(a,b) €
S xS :as=bs forall s € S}. It is well known that p is a congruence on S;
from the identity it follows that S/p is commutative.

By Result 4, p is the Rees ideal congruence modulo the ideal I = 0Op,
which is the left annihilator of S. Thus if a € S, either aS =0 or ap = {a}.

Now let a,b € S;a #b. If a,b,ab ¢ I, then since S/p is commutative,
ab="ba. If a,b € I then ab=ba =0.

If a,b & I then, since the principal ideals of S are totally ordered, without
loss of generality a = xby for some z,y € S'. Since a € I, x,y € I. By the
first case above, x,b,y commute. Hence ab = ba.

Without loss of generality, the remaining case is where a € I,b & I. As
above, a = xby for some z,y € S'. If y # 1, then xby = bxy. Thus we may
assume that either @ = bx or a = xb for some z € S. If x € I then by the
previous paragraph br = xb and so ab = ba. Thus we may assume x € I. Now
we may similarly write £ = bxy or z = x1b for some z; € S. If 21 &€ I then,
again similarly, bz; = 21b and so a = b’z; or a = x1b?, whence ab = ba. If
x1 € I, continue this process by writing ;1 = bxs or x1 = x2b. By induction,
either some x; ¢ I and then ab = ba, or for all i there exists z; such that
a=b"z; or a=x;b"t'. But S is nil, so it follows that a = 0, completing the
proof. ]

Theorem 5. If S is a medial, nil A-semigroup, then S is commutative.

Proof.  Again, let p be the congruence {(a,b) € S x S : as = bs for all s €
S}. From the medial identity it is clear that S/p is right commutative. Since
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it is again a nil A-semigroup, it is commutative, by the previous proposition.
Let I, = 0p. Let A\ be the dual congruence, so that S/ is also commutative.
Let Ir = 0A. As in the proof of the proposition, for each a € S, either ap = I,
or ap = {a}, and dually.

Since the ideals of S are totally ordered, without loss of generality I, C
Ir. Let a,b € S. If a,b € I; then precisely as in the third and fourth
paragraphs of the proof of the previous proposition, ab = ba. Otherwise,
without loss of generality, a € I, so ab=0. But also a € Ir, so ba =0. ]

We now turn to T1 semigroups.

Result 11.  [17, Lemma 8.5], [8, Theorem 1.58] Let S = N U{e} be any T1
semigroup. Then every ideal of N is also an ideal of S and so N is also a
A -semigroup.

Theorem 6. Let S = N U {e} be a medial T1 semigroup. Then N is a
commutative A-semigroup and S satisfies one of the following conditions.

(1) e acts as an identity element for N and S itself is commutative.

(2) e acts as a right identity and a left annihilator for N and S is isomorphic
to the semigroup Z in Theorem 1(iii).

(3) the dual of the previous case.

Proof. That N is commutative is immediate from Result 11 and Theorem 5.

Now suppose that S is any T1 semigroup for which N is commutative.
We show first that for any a € N, either ea = a or ea = 0. (The dual statement
obviously also holds.) Result 11 shows that since N'aN? is an ideal of N, it is
also an ideal of S, whence it contains ea. Hence, if ea # a, then ea = at for
some t € N. Then ea = eat = eat™ for each n and, since t € N, ea = 0.

Next suppose that ea = a for some nonzero a € N. Let b € N. Either
b=ax or a = bz, for some z € S*. In the former case, eb = eax = ax = b;
in the latter case, suppose eb = 0: then ea = ebx = 0, a contradiction, so that
again eb =b. Hence e is either a left identity for S or a left annihilator for N.
Clearly the dual statement also holds.

Notice, however, that if N is nonzero, then e cannot be both a left and a
right annihilator for N. For in that event, given a € N — {0}, StaS! C S'eS?,
so a = set for some s,t € S'. Both s and t cannot belong to N, for then
se = et = 0. But otherwise, either a = ea or a = ae, contradicting the
assumption.

Thus e is either an identity for S, or is a right identity for S and a left
annihilator for N, or is a left identity for S and a right annihilator for N. In
the second of those three cases, let a,b € N. Then ab = (ae)b = a(eb) = 0,
that is, N is a null semigroup. But every subset of N that contains 0 is an
ideal, so |[N| < 2. When N = {0}, e actually acts as an identity and so S
falls under (1). Otherwise, N = {a,0}, say, where ae = a,ee = e and all other
products are 0. Clearly, the third case is dual. [ ]
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The concrete results obtained in this section raise the question whether

Trotter’s results [17] on exponential A-semigroups can similarly be strength-
ened. In particular, is it true (c.f. Theorem 5) that every nil, exponential
A-semigroup is commutative?
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