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Abstract

Semigroups whose congruences form a chain are often termed ∆-semigroups.
The commutative ∆-semigroups were determined by Schein and by Tamura.
A natural generalization of commutativity is permutativity: a semigroup is
permutative if it satisfies a non-identity permutational identity. We completely
determine the permutative ∆-semigroups. It turns out that there are only six
noncommutative examples, each of which has at most three elements.

A semigroup is called permutative if it satisfies an identity x1x2 . . . xn =
xσ(1)xσ(2) · · ·xσ(n) , for some non-identity permutation σ of {1, 2, . . . , n} .

A ∆-semigroup is one whose congruences form a chain. The commutative
∆-semigroups were completely determined by B. Schein [12], [13] and T. Tamura
[15]. In conjunction with their result, stated below as Result 1, our main theorem
completely determines the permutative ∆-semigroups:

Theorem 1. A semigroup S is a permutative ∆-semigroup if and only if it
satisfies one of the following conditions.

(i) S is a commutative ∆-semigroup.

(ii) S is isomorphic to either R or R0 , where R is a two-element right zero
semigroup.

(iii) S is isomorphic to the semigroup Z = {0, e, a} , obtained by adjoining
to a null semigroup {0, a} an idempotent element e that is both a right
identity and a left annihilator for Z .

(iv) S is isomorphic to the dual of a semigroup of type (ii) or (iii).

Let R+ denote the semigroup of positive real numbers under addition and
let Q denote the Rees quotient semigroup by the ideal I = [1,∞). Similarly, let
R denote the Rees quotient semigroup by the ideal I = (1,∞). A subsemigroup
G of Q or R is 0-unitary if x, x+ y ∈ G, x+ y �∈ I together imply y ∈ G .

∗ The first author’s research was supported by the Hungarian NFSR Grant No. T042481
and No. T043034.
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Result 1. [12], [13], [15] A semigroup S is a commutative ∆-semigroup if
and only if it satisfies one of the following conditions:

(i) S is isomorphic to a subgroup of a quasicyclic p-group (p is a prime).

(ii) S is a cyclic nilpotent semigroup.

(iii) S is an infinite 0-unitary subsemigroup of either Q or R .

(iv) S is obtained from a group of type (i) by adjoining a zero element.

(v) S is obtained from a semigroup of type (ii) or (iii) by adjoining an identity
element.

As may also be easily verified directly, it follows from this result that a
semilattice S is a ∆-semigroup if and only if |S| ≤ 2. Several authors have
considered ∆-semigroups satisfying various generalizations of commutativity,
for instance in [5], [6], [7], [8], [17].

The outline of the proof of Theorem 1 is as follows.

A key role is played by the archimedean semigroups: those semigroups
S with the property that, for arbitrary elements a, b ∈ S , there are positive
integers i and j such that ai ∈ SbS and bj ∈ SaS . In [9], it is proved that
every permutative semigroup is a semilattice of archimedean semigroups, that
is, a Putcha semigroup ([10]). In conjunction with the observation above, on
semilattices, it follows that a permutative ∆-semigroup is either archimedean or
is a chain of two archimedean semigroups. In the description of the commutative
∆-semigroups, those of types (i)-(iii) fall in the former category, (iv) and (v) in
the latter.

A semigroup S is nil if it has a zero element and for each a ∈ S , an = 0
for some positive integer n ; in particular, S is nilpotent if Sn = {0} for some
positive integer n . Clearly, every nil semigroup is archimedean.

A second key role is played by the medial semigroups: those that satisfy
the permutational identity axyb = ayxb . This is evident from the following.

Result 2. [11, Theorem 1] For any permutative semigroup S , there is a posi-
tive integer k such that, for all u, v ∈ Sk and all a, b ∈ S , we have uabv = ubav .
In particular, Sk is medial.

A semigroup S is called an idempotent semigroup if it satisfies the con-
dition S2 = S . From Result 2, it is obvious that every permutative idempotent
semigroup is medial.

In §2, a detailed study of the permutative archimedean case reveals that
any such ∆-semigroup is medial. An important step is a proof that every
permutative, archimedean semigroup without idempotent element has a non-
trivial group homomorphic image. It is then shown that every permutative
∆-semigroup is medial.

In §3 we first prove that every medial, nil ∆-semigroup is actually com-
mutative. This completes the classification in the archimedean case. In the
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non-archimedean case, we extend some techniques and results of Trotter [17]
on exponential semigroups, in order to complete the proof of Theorem 1. A
semigroup is exponential if it satisfies (xy)n = xnyn for all positive integers
n . It is easily verified that every medial semigroup is exponential. Interesting
questions remain unanswered for such ∆-semigroups (see Section 3).

Other papers on the topic of ∆-semigroups are by C. Bonzini and A.
Cherubini [1], who determined all finite Putcha ∆-semigroups, and by T.
Tamura and P.G. Trotter [16], who described all finite inverse ∆-semigroups
(and some related infinite ones).

The dissertation [4] has often been cited in the literature, often inaccu-
rately. The original version of the current paper contained a critique of the
dissertation which the referee deemed inappropriate, since it has not been pub-
lished. In that light, we have made no further reference to it in the sequel.

1. Generalities on ∆-semigroups

We will need the following properties of ∆-semigroups. In addition, we will
make use of Result 1, for instance its description of the ∆-semigroups that are
abelian groups.

Result 3. [15] Every homomorphic image of a ∆-semigroup is also a ∆-
semigroup.

Since with every ideal of a semigroup there is associated its Rees congru-
ence, it is obvious that the ideals of any ∆-semigroup are totally ordered. For
nil semigroups the converse holds.

Result 4. [8, Theorem 1.56] Let S be a nil semigroup. The following are
equivalent:

(1) S is a ∆-semigroup;

(2) the ideals of S are totally ordered;

(3) the principal ideals of S are totally ordered.

In that case, each congruence on S is the Rees congruence corresponding
to the ideal consisting of the congruence class of 0.

An ideal A of a semigroup S is said to be dense in S if the equality
relation on S is the only congruence on S whose restriction to A is the equality
relation on A . Observe that every nontrivial ideal of a ∆-semigroup S is dense,
since any congruence on S whose restriction to such an ideal A is the equality
relation cannot contain the Rees congruence associated with A and therefore
must be contained in it instead.

Result 5. [8, Theorem 1.61], [17] A non-trivial band is a ∆-semigroup if and
only if it is isomorphic to either R or R1 or R0 , where R is a two-element
right zero semigroup, or L or L1 or L0 , where L is a two-element left zero
semigroup, or F , where F is a two-element semilattice.



OF4 Nagy and Jones

As every semigroup is a semilattice of semilattice indecomposable semi-
groups, Results 3 and 5 imply that a ∆-semigroup is either semilattice inde-
composable or a semilattice of two semilattice indecomposable semigroups.

Result 6. [8, Theorem 1.57] If a ∆-semigroup S is a semilattice of a nil
semigroup S1 and an ideal S0 of S then |S1| = 1 .

Result 7. [15] If a semigroup S contains a proper ideal I and if S is a ∆-
semigroup then neither S nor I has a non-trivial group homomorphic image.

Result 8. [8, Corollary 1.3] If a ∆-semigroup S is an ideal extension of a
rectangular group K by a semigroup with zero then K is either a group or a
left zero semigroup or a right zero semigroup.

We note that, in case S = K , S is either a group or a right zero semigroup
or a left zero semigroup. If K is a proper ideal of S then (using also Result 5)
K is either a right zero semigroup or a left zero semigroup.

Result 9. [1, Lemma 1.3] No ∆-semigroup can contain an ideal that is itself
an ideal extension of a non-trivial right (or left) zero semigroup by a non-trivial
nil semigroup that is finite cyclic.

Proof. The following argument is significantly simpler than that in the cited
paper. Suppose the ∆-semigroup S contains as an ideal an extension of the
right zero semigroup R by the nontrivial cyclic nil semigroup A , generated by
a . Then A−R = {a, a2, . . . , an−1} , for some n > 1, where an = z ∈ R .

Let ρ denote the congruence on S generated by (a, a2). Since S is
a ∆-semigroup, ρ must contain the Rees congruence modulo the ideal R .
Suppose r ∈ R , r �= z . Then (r, z) ∈ ρ and so (see [3]) there is a sequence of
elementary transitions leading from r to z . The first such transition has the
form r = sat → sa2t = r1 , or r = sa2t → sat = r1 , where s, t ∈ S1 and we
may assume r1 �= r , so that at �∈ R and at is therefore a power of a . Now
since r = r2 , either r = (rs)(at) or r = (rsa)(at); in either case r ∈ Ra . Since
z = za , z ∈ Ra also, that is, R = Ra . But then, by iteration, R = Ran = {z} .
Hence R cannot be non-trivial.

2. Every permutative ∆-semigroup is medial

We first consider archimedean permutative semigroups in general. The archi-
medean semigroups containing at least one idempotent element are character-
ized in [2]. Namely, a semigroup is archimedean and contains an idempotent
element if and only if it is an ideal extension of a simple semigroup containing
an idempotent element by a nil semigroup. As a simple semigroup S satisfies
S2 = S , then by Result 2, every simple permutative semigroup is medial and
thus, by [14], it is a rectangular abelian group (a direct product of a left zero
semigroup, a right zero semigroup and an abelian group). Thus we have the
following result.
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Theorem 2. Every permutative archimedean semigroup S containing at
least one idempotent element is an ideal extension of a rectangular abelian group
by a nil semigroup.

A subset A of a semigroup S is called a left (right) unitary subset of S if
a, ab ∈ A (a, ba ∈ A) implies b ∈ A for every a, b ∈ S . The subset A is called
a unitary subset of S if it is a left unitary and a right unitary subset of S . A
subset A of a semigroup S is called a reflexive subset of S if ab ∈ A implies
ba ∈ A for every a, b ∈ S .

Lemma 1. If a is an arbitrary element of a permutative semigroup S then

Sa = {x ∈ S : aixaj = ah for some positive integers i , j , k}

is the smallest reflexive unitary subsemigroup of S that contains a .

Proof. Let S be a permutative semigroup. Then there is a positive integer
k such that uabv = ubav for every u, v ∈ Sk and every a, b ∈ S . Let a be
an arbitrary element of S . It is clear that a ∈ Sa . To show that Sa is a
subsemigroup of S , let x, y ∈ Sa be arbitrary elements. Then aixaj = ah

and amyan = at for some positive integers i, j, h,m, n, t . We can suppose that
i, n ≥ k . Then

ah+t = aixajamyan = aixyaj+m+n

and so xy ∈ Sa . To show that Sa is left unitary, assume x, xy ∈ Sa for
some x, y ∈ S . Then aixaj = ah and amxyan = at for some positive integers
i, j, h,m, n, t . We can suppose that m ≥ j and i, n ≥ k . Then

ai+t = aiamxyan = aixamyan = aixaja(m−j)yan = ah+m−jyan.

Hence y ∈ Sa . We can prove, in a similar way, that y, xy ∈ Sa implies x ∈ Sa .
Thus Sa is an unitary subsemigroup of S . Sa is reflexive, because it is unitary
and

(xy)3 = x(yx)2y = xy2x2y = xy(yx)xy

holds in S . If B is a unitary subsemigroup of S such that a ∈ B then,
for an arbitrary element x ∈ Sa , there are positive integers i, j, k such that
aixaj = ak ∈ B . Then x ∈ B and so Sa ⊆ B .

The following theorem extends [15, Lemma 11] and [8, Theorem 9.11].
There are also analogues such as [17, Theorem 1.2].

Theorem 3. Every permutative archimedean semigroup without idempotent
element has a non-trivial group homomorphic image.

Proof. Let S be a permutative archimedean semigroup without idempotent
element. Assume Sa �= S for some a ∈ S . Then the principal congruence PSa of
S defined by the reflexive unitary subsemigroup Sa is a group congruence on S
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(see [3]) and so the factor semigroup S/PSa is a non-trivial group homomorphic
image of S . Suppose Sa = S for all a ∈ S . Then, for any a ∈ S , Sa2 = S
and so a ∈ Sa2 . Then there are positive integers i, j, h such that we have
(a2)ia(a2)j = (a2)h , that is, a2i+2j+1 = a2h contradicting the assumption that
S has no idempotent element.

Next, we deal with permutative, archimedean ∆-semigroups. First of all,
we prove three lemmas that will be used in the proof of Proposition 1 below.

Lemma 2. Every nilpotent ∆-semigroup is finite cyclic. Every non-nil-
potent, nil permutative ∆-semigroup is idempotent. Hence any permutative
nil ∆-semigroup is medial.

Proof. First, suppose that S is a nonidempotent nil ∆-semigroup. Let
a, b ∈ S−S2 . Since the ideals of S are totally ordered, we may assume without
loss of generality that S1bS1 ⊆ S1aS1 . If b �= a then b = sat , where either s
or t is in S , contradicting b /∈ S2 . Hence b = a and so S − S2 = {a} . Let
k > 1 be an arbitrary integer. If c ∈ Sk−1−Sk then c = c1c2 · · · ck−1 for some
ci ∈ S − S2 . Hence c = ak−1 .

If S is nilpotent, then Sj = {0} for some least positive integer j and, by
the above, S = {a, a2, . . . , aj = 0} . Clearly such a semigroup is medial.

If S is nonidempotent and nil, but non-nilpotent, then Sj �= {0} for all
j ≥ 1. Let N be any positive integer such that aN = 0. Let b ∈ S3N − {0} ,
b = b1b2 · · · b3N say. Since a /∈ S2 , a /∈ S1biS

1 unless a = bi for each i . By
the total ordering on ideals of S , for each i , there are elements si, ti ∈ S1 such
that bi = siati . Now, for some index i < N , tisi+1 ∈ Sm − {0} for every m >
0, for otherwise, the product b = (s1at1)(s2at2) · · · (sNatN ) · · · (s2Nat2N ) · · ·
(s3Nat3N ) involves the power aN . Similarly, an element tjsj+1 has the same
property for some index j ≥ 2N .

If S is also permutative, then there exists K such that SK is medial.
Therefore if N ≥ K , all the terms between tisi+1 and tjsj+1 in the product
for b may be commuted, yielding a term aN , contradicting b �= 0. Thus the
second statement in the lemma is proven. As noted in §1, every idempotent,
permutative semigroup is medial.

Lemma 3. Let S be a permutative semigroup with a dense ideal R that is
a right zero semigroup. If R is nontrivial, then S/R is nilpotent.

Proof. Suppose S satisfies the identity x1x2 · · ·xn = xσ(1)xσ(2) · · ·xσ(n) ,
for some n > 1, where σ is a non-trivial permutation. Then σ(n) = n
since, otherwise, if r, s are distinct members of R , substituting r = xn and
s = xσ(n) (and substituting arbitrarily for any other variables) yields r = s .
Let i be least such that σ(j) = j for i ≤ j ≤ n . Clearly i > 2. Let r ∈ R
and substitute xi−1 = r . Then rxi · · ·xn = rwxi · · ·xn for every r ∈ R ,
where w is a non-empty word in {x1, x2, . . . , xi−2} . It is easy to see that
η = {(a, b) ∈ S × S : (∀r ∈ R) ra = rb} is a congruence on S such that the
restriction η|R of η to R equals idR . As R is a dense ideal of S , we have
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η = idS . As (xi · · ·xn, wxi · · ·xn) ∈ η , we get that xi · · ·xn = wxi · · ·xn is
an identity satisfied in S . Now by choosing for any one of the variables in w
an element of R , it follows that xi · · ·xn ∈ R for all xi, . . . , xn ∈ S . Thus
Sn−i+1 ∈ R ; equivalently, (S/R)n−i+1 = {0} .

Lemma 4. No permutative ∆-semigroup can be an ideal extension of a
nontrivial right (or left) zero semigroup by a non-trivial nil semigroup.

Proof. Suppose such a semigroup S exists, with non-trivial right zero ideal
R . Then, as observed in §1, R is a dense ideal of S . By the previous lemma,
S/R is nilpotent. Since S/R is also a ∆-semigroup, it is finite cyclic. Then
Result 9 applies.

Proposition 1. Every permutative, archimedean ∆-semigroup is either (a)
simple, whence a group or a left or right zero semigroup, or (b) nil. In any case,
every such semigroup is medial.

Proof. Let S be such a semigroup. If S is simple then S is idempotent
and so is medial, thus a rectangular group [14] and so is as described, by the
comments following Result 8.

If S is not simple then, by Theorem 3 and Result 7, S contains an
idempotent element. By Theorem 2, Result 8 and the remarks that follow the
latter, S is an ideal extension of a right or left zero semigroup K by a non-
trivial nil semigroup. By Lemma 4, |K| = 1, that is, S is a non-trivial nil
semigroup. The mediality now follows by Lemma 2.

Finally, we may consider the general permutative case.

Theorem 4. Every permutative ∆-semigroup is medial.

Proof. Let S be such a semigroup. The archimedean case is covered by the
preceding result.

We have seen that the alternative case is when S is a semilattice of two
archimedean semigroups S1 and S0 with S0S1 ⊆ S0 . By Result 3, S0

1 and so
S1 is an archimedean ∆-semigroup. It is clear that S1 is permutative. Then S1

is either a group or a two-element right or left zero semigroup (see also Result 6).
In all three cases S2 ∩ S0 �= ∅ and S1 ⊆ S2 . As the ideals S0 and S2 of S are
comparable, we have S2 = S . Then, by Result 2, S is a medial semigroup.

3. Medial ∆-semigroups

We shall refine the following partial description of the medial ∆-semigroups
summarized by the first author, decucible from the results of Trotter [17, The-
orems 2.7, 3.5, 3.6].

Result 10. [8, Theorem 9.20] A medial semigroup is a ∆-semigroup if and
only if it satisfies one of the following conditions.
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(i) S is a ∆-group (necessarily abelian), or such a group with a zero adjoined.

(ii) S is a nil ∆-semigroup.

(iii) S is isomorphic to either R or R0 , where R is a two-element right zero
semigroup.

(iv) S is isomorphic to the dual of a semigroup of type (iii).

(v) S = N ∪ {e} , where e2 = e , N is a nil semigroup and eN,Ne ⊆ N .

Trotter [17] called any ∆-semigroup constructed in the fashion of (v) a
T1 semigroup. (In our earlier notation, N = S0, {e} = S1 .)

We shall first show that every medial, nil ∆-semigroup is commutative;
and then that every medial, T1 ∆-semigroup is either commutative or is iso-
morphic to the semigroup Z of Theorem 1 or its dual. In view of Result 10,
the proof of Theorem 1 is then complete.

A semigroup is left commutative if it satisfies the identity abx = bax ;
right commutativity is defined dually. Clearly all such semigroups are medial.

Proposition 2. If S is a left or right commutative, nil ∆-semigroup then
it is commutative.

Proof. We need only consider the identity abx = bax . Let ρ = {(a, b) ∈
S × S : as = bs for all s ∈ S} . It is well known that ρ is a congruence on S ;
from the identity it follows that S/ρ is commutative.

By Result 4, ρ is the Rees ideal congruence modulo the ideal I = 0ρ ,
which is the left annihilator of S . Thus if a ∈ S , either aS = 0 or aρ = {a} .

Now let a, b ∈ S, a �= b . If a, b, ab �∈ I , then since S/ρ is commutative,
ab = ba . If a, b ∈ I then ab = ba = 0.

If a, b �∈ I then, since the principal ideals of S are totally ordered, without
loss of generality a = xby for some x, y ∈ S1 . Since a �∈ I , x, y �∈ I . By the
first case above, x, b, y commute. Hence ab = ba .

Without loss of generality, the remaining case is where a ∈ I, b �∈ I . As
above, a = xby for some x, y ∈ S1 . If y �= 1, then xby = bxy . Thus we may
assume that either a = bx or a = xb for some x ∈ S . If x �∈ I then by the
previous paragraph bx = xb and so ab = ba . Thus we may assume x ∈ I . Now
we may similarly write x = bx1 or x = x1b for some x1 ∈ S . If x1 �∈ I then,
again similarly, bx1 = x1b and so a = b2x1 or a = x1b

2 , whence ab = ba . If
x1 ∈ I , continue this process by writing x1 = bx2 or x1 = x2b . By induction,
either some xi �∈ I and then ab = ba , or for all i there exists xi such that
a = bi+1xi or a = xib

i+1 . But S is nil, so it follows that a = 0, completing the
proof.

Theorem 5. If S is a medial, nil ∆-semigroup, then S is commutative.

Proof. Again, let ρ be the congruence {(a, b) ∈ S × S : as = bs for all s ∈
S} . From the medial identity it is clear that S/ρ is right commutative. Since
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it is again a nil ∆-semigroup, it is commutative, by the previous proposition.
Let IL = 0ρ . Let λ be the dual congruence, so that S/λ is also commutative.
Let IR = 0λ . As in the proof of the proposition, for each a ∈ S , either aρ = IL
or aρ = {a} , and dually.

Since the ideals of S are totally ordered, without loss of generality IL ⊆
IR . Let a, b ∈ S . If a, b �∈ IL then precisely as in the third and fourth
paragraphs of the proof of the previous proposition, ab = ba . Otherwise,
without loss of generality, a ∈ IL , so ab = 0. But also a ∈ IR , so ba = 0.

We now turn to T1 semigroups.

Result 11. [17, Lemma 3.3], [8, Theorem 1.58] Let S = N ∪{e} be any T1
semigroup. Then every ideal of N is also an ideal of S and so N is also a
∆-semigroup.

Theorem 6. Let S = N ∪ {e} be a medial T1 semigroup. Then N is a
commutative ∆-semigroup and S satisfies one of the following conditions.

(1) e acts as an identity element for N and S itself is commutative.

(2) e acts as a right identity and a left annihilator for N and S is isomorphic
to the semigroup Z in Theorem 1(iii).

(3) the dual of the previous case.

Proof. That N is commutative is immediate from Result 11 and Theorem 5.

Now suppose that S is any T1 semigroup for which N is commutative.
We show first that for any a ∈ N , either ea = a or ea = 0. (The dual statement
obviously also holds.) Result 11 shows that since N1aN1 is an ideal of N , it is
also an ideal of S , whence it contains ea . Hence, if ea �= a , then ea = at for
some t ∈ N . Then ea = eat = eatn for each n and, since t ∈ N , ea = 0.

Next suppose that ea = a for some nonzero a ∈ N . Let b ∈ N . Either
b = ax or a = bx , for some x ∈ S1 . In the former case, eb = eax = ax = b ;
in the latter case, suppose eb = 0: then ea = ebx = 0, a contradiction, so that
again eb = b . Hence e is either a left identity for S or a left annihilator for N .
Clearly the dual statement also holds.

Notice, however, that if N is nonzero, then e cannot be both a left and a
right annihilator for N . For in that event, given a ∈ N −{0} , S1aS1 ⊂ S1eS1 ,
so a = set for some s, t ∈ S1 . Both s and t cannot belong to N , for then
se = et = 0. But otherwise, either a = ea or a = ae , contradicting the
assumption.

Thus e is either an identity for S , or is a right identity for S and a left
annihilator for N , or is a left identity for S and a right annihilator for N . In
the second of those three cases, let a, b ∈ N . Then ab = (ae)b = a(eb) = 0,
that is, N is a null semigroup. But every subset of N that contains 0 is an
ideal, so |N | ≤ 2. When N = {0} , e actually acts as an identity and so S
falls under (1). Otherwise, N = {a, 0} , say, where ae = a, ee = e and all other
products are 0. Clearly, the third case is dual.
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The concrete results obtained in this section raise the question whether
Trotter’s results [17] on exponential ∆-semigroups can similarly be strength-
ened. In particular, is it true (c.f. Theorem 5) that every nil, exponential
∆-semigroup is commutative?
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