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Abstract

The description by the authors of the inverse semigroups S for which the lattice LF(S) of
full inverse subsemigroups is lower semimodular is used to describe those for which (a) the
lattice L(S) of all inverse subsemigroups or (b) the lattice Co (S) of convex inverse subsemi-
groups has that property. In each case, we show that this occurs if and only if the entire
lattice is a subdirect product of LF(S) with L(ES), or Co (ES), respectively, where ES is
the semilattice of idempotents of S; a simple necessary and sufficient condition is found for
each decomposition. For a semilattice E, L(E) is in fact always lower semimodular, and
Co (E) is lower semimodular if and only if E is a tree. The conjunction of these results leads
to quite a divergence between the ultimate descriptions in the two cases, L(S) and Co (S),
with the latter being substantially richer.
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It has long been known (see [17] for a survey) that only in very restrictive cases does the
lattice L(S) of all inverse subsemigroups of an inverse semigroup S satisfy any lattice-theoretic
property of general interest. This is also true of the lattice Co (S) comprised of the inverse
subsemigroups that are convex with respect to the natural partial order on S, the study of
which was initiated by the authors in [2, 3]. For that reason, most research in this area has
focused on their common sublattice LF(S), of full inverse subsemigroups, where a rich theory
has been developed. However we show that lower semimodularity determines interesting classes
of inverse semigroups in the general context. This is especially true in the convex case.

To a large extent, the paucity of interesting results obtained heretofore is a result of the
restrictions imposed on a semilattice E by lattice-theoretic properties of L(E) and Co (E)
(see §2.1). The prospect that more interesting results might be obtained in the case of lower
semimodularity arises from the long-known fact that the lattice L(E) always has that property,
and the fact [1] that Co (E) has that property if (and only if) E is a tree, that is, a semilattice
in which every principal ideal is a chain.

Our study of lower semimodularity of L(S) and Co (S) proceeds in parallel. Apart from
the differences between L(S) and Co (S) stated above in the case of semilattices, the final
characterizations, Theorems 4.9 and 4.5, respectively, turn out to have a somewhat different
character due to the contrast in the case of simple semigroups, the case to which the study of
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the lattice LF(S) essentially reduces. It turns out that in the simple case, if LF(S) is lower
semimodular and ES is a tree, then Co (S) is also lower semimodular. However, in the case of
L(S), lower semimodularity forces S to be a group in this situation.

The essence of this paper is carried in the fact (Proposition 4.1) that lower semimodularity
of either L(S) or Co (S) implies that the semilattice ES of idempotents of S is a neutral element
in the lattice, and hence the lattice is a subdirect product of the ideal L(ES) or Co (ES), respec-
tively, with their common filter [ES , S] = LF(S). In §3, we conduct an in-depth analysis of the
neutrality of ES , with a view to future application in other contexts. The simple “archimedean”
properties (2) and (2C), respectively, of Proposition 3.2 are the precise conditions required for
neutrality to be valid in the respective lattices.

Thus describing those S for which L(S) or Co (S) is lower semimodular reduces to the cor-
responding question for semilattices — answered above — and for the lattice LF(S), answered
in [4]: see §2.2. Combining that information with that associated with the decomposition leads
to the final descriptions in Theorems 4.9 and 4.5.

In a sequel [5], the authors will develop further the methods of this paper, with application
to join semidistributivity of L(S) and Co (S).

1 Preliminaries.

1.1 Background on lattices and posets.

We use [8] as a general reference. In any poset P , if a ≤ b then [a, b] denotes the interval
{c ∈ P : a ≤ c ≤ b}; open and half-open intervals then have their usual meaning. The notation
b � a means that b covers a, that is, b > a and [a, b] = {a, b}; a ‖ b means that a and b are
incomparable in the natural order. For X ⊆ P , X↓= {a ∈ P : a ≤ x for some x ∈ X} and X↑
is its order dual; if X = {x}, we may instead write x↓ and x↑. A subset X of P is an (order)
ideal if X↓⊆ X, and an (order) filter if the dual relation holds.

A lattice L is lower semimodular if whenever a ∨ b � a in L then b � a ∧ b. This property
is preserved by interval sublattices and subdirect products [18, Theorem 1.7.6]. For further
information on semimodularity and its many variations, see the monograph by Stern [18].

A lattice is modular if the modularity relation M is the universal relation. Here aM b if
(a∨ x)∧ b = (a∧ b)∨ x for all x ≤ b; equivalently, (a∨ x)∧ b = x for all x ∈ [a∧ b, b]. Its order
dual is denoted M∗.

A variation of lower semimodularity is M∗-symmetry: the property that the relation M∗

is symmetric. Similarly to lower semimodularity, it is preserved by interval sublattices and
subdirect products. Every M∗-symmetric lattice is lower semimodular; for lattices of finite
length, the two properties are equivalent. Every modular lattice is M∗-symmetric and thus
lower semimodular.

The following terms are useful in the analysis of lattice decompositions (see [8]). An element
a of a lattice L is distributive in L if a∨(b∧c) = (a∨b)∧(a∨c) for all b, c ∈ L. If L is a complete
lattice then a is completely distributive if the binary meets may be replaced by arbitrary ones.
Define dual distributivity and complete dual distributivity in the obvious way. The element a
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separates L if a ∧ b = a ∧ c and a ∨ b = a ∨ c together imply b = c, for all b, c ∈ L.
An element is neutral in the lattice if it is distributive, dually distributive and separating.

Clearly a is neutral if and only if the map x→ (a∧x, a∨x) embeds L in the (subdirect) product
of the principal ideal a↓ and the principal filter a↑. In a complete lattice, it may be possible to
describe the image more precisely, as follows.

LEMMA 1.1 Let L be a complete lattice L, with least and greatest elements 0 and 1, respec-
tively. If a is a neutral element of L that, in addition, is completely dually distributive, then
the image of L in the direct product [0, a] × [a, 1] is {(f, u) : u ≤ a ∨ fmax}, where for f ≤ a,
fmax is the greatest element of L having f as its meet with a.

Proof. Complete dual distributivity of a in L guarantees the existence of fmax. Let M
denote the specified subset of [0, a]× [a, 1]. For any x ∈ L, x ≤ (a∧x)max, by definition. Hence
a ∨ x ≤ a ∨ (a ∧ x)max and so (a ∧ x, a ∨ x) ∈ M . Conversely, if (f, u) ∈ M , let x = u ∧ fmax.
Then it is straightforward to check that a ∧ x = f and a ∨ x = u. �

The following elementary result will also be useful.

LEMMA 1.2 If g is a dually distributive element of a lattice L, then whenever a � b in L,
g ∧ a � g ∧ b.

Proof. If g ∧ a > g ∧ b, choose x such that g ∧ b < x ≤ g ∧ a. Then b < b ∨ x ≤ a and so,
since a � b, b∨ x = a. By dual distributivity, g ∧ a = (g ∧ b)∨ (g ∧ x) = x. Hence g ∧ a � g ∧ b.
�

1.2 The lattice Co (S).

The natural partial order on an inverse semigroup S is given by a ≤ b if a = aa−1b, with many
equivalent conditions to be found in [9, Proposition 5.2.1]. In particular, if ES denotes the
semilattice of idempotents of S, then a↓= ESa = aES for any a ∈ S. That the natural partial
order is compatible with the product and with inversion is easily seen, as is the fact that it is
respected by homomorphic images.

An inverse subsemigroup of S is convex if whenever it contains a and b, with a ≤ b, then
it contains [a, b]. Since convexity is preserved by arbitrary intersections, the convex inverse
subsemigroups of S form a complete lattice, Co (S), with the empty subsemigroup as its least
element. (Note that in [1, 2, 3], the notation LCV(S) was used instead of Co (S).) The lattice
of all inverse subsemigroups is denoted L(S). In general, Co (S) is not a sublattice of L(S): in
fact [2, p. 53] this holds if and only if the length of ES is at most 2, in which case the two
lattices coincide. If X ⊆ S, we denote the inverse subsemigroup that it generates by 〈X〉 (but
be warned that in papers that are strictly on the lattice of full inverse subsemigroups, such as
[4], this notation is used for the full inverse subsemigroup generated by S). The convex inverse
subsemigroup that it generates is denoted by 〈〈X〉〉. If X = {x1, x2, . . . , xn} we may instead
write 〈x1, x2, . . . , xn〉 and 〈〈x1, x2, . . . , xn〉〉, respectively. If U, V ∈ Co (S), we denote their join
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in L(S) by U ∨ V and their join in Co (S) by U � V . Clearly U � V = 〈〈U ∨ V 〉〉. The following
result will find frequent application.

RESULT 1.3 [2, Proposition 2.2] For any inverse subsemigroup U of an inverse semigroup,
〈〈U〉〉 is the union of the intervals [a, b], a, b ∈ U , a ≤ b. Therefore E〈〈U〉〉 = 〈〈EU 〉〉.

The semilattice of idempotents of any inverse semigroup S is a convex inverse subsemigroup
of S. Hence the lattice Co (ES) = [∅, ES ] is an ideal in the lattice Co (S). In a complementary
fashion, every full inverse subsemigroup — one that contains ES — is convex, and the full
inverse subsemigroups form the filter [ES , S] in the lattice Co (S).

Note that since any group is unordered under the natural partial order, its convex inverse
subsemigroups comprise its subgroups together with its empty subsemigroup, which acts as
an adjoined zero. For properties of subgroup lattices, see [19, 16]. In particular, we need the
fact that a group has distributive lattice of subgroups if and only if it is locally cyclic (whence
abelian). The finite groups with lower semimodular subgroup lattice are completely determined;
however, little is known in the infinite situation. The situation is similar for modularity.

1.3 Further semigroup-theoretic background.

An inverse semigroup is combinatorial (also termed aperiodic) if Green’s relation H is the
identity relation, equivalently, each of its subgroups is trivial. We call a subgroup isolated if it
comprises an entire D-class, and thus an entire J -class. The notation GS refers to the union of
the subgroups of S. An inverse semigroup S is E-unitary if ES↑= ES . Denote by σ the least
group congruence on S.

With each J -class J of an inverse semigroup S is associated its principal factor PF (J),
which is either a 0-simple semigroup or, in case J is the minimum ideal (the kernel of S, a
simple semigroup. (See [6]). The definition used in earlier work by Jones varied slightly from
this standard one, in that in the case of a minimum ideal, a zero element was adjoined.)

A 0-simple semigroup is completely 0-simple if every nonzero idempotent is minimal among
such idempotents. The completely 0-simple inverse semigroups are the Brandt semigroups.
Denote by Bn the combinatorial Brandt semigroup with n nonzero idempotents.

Any 0-simple inverse semigroup that is not completely 0-simple contains (a copy of) the
bicyclic semigroup (again, see [6]): the inverse monoid presented by B = 〈a | aa−1 > a−1a〉.
Its identity element is e = aa−1 and EB = {e > a−1a > · · · > a−nan > · · ·}, isomorphic to
the chain Cω of nonnegative integers under the reverse of the usual order. It is well known
(and easily verified) that B is E-unitary and combinatorial. In any inverse semigroup S, ES
is said to be archimedean in S if for any element a of S such that aa−1 > a−1a, and for any
idempotent f of S, a−nan ≤ f for some positive integer n.

The bicyclic semigroup is isomorphic to the Munn semigroup TCω . In general, given a
semilattice Y , TY consists of the isomorphisms between principal ideals of Y , under composition
of partial mappings. Its idempotents are the identity automorphisms 1e↓, e ∈ Y ; thus its
semilattice of idempotents is isomorphic to Y and, in general, we shall identify 1e↓ with e itself.
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Such a semigroup is bisimple if and only if Y is uniform: all its principal ideals are isomorphic.
See [9, Chapter 5] for these and further properties.

Finally, we will need some technical details regarding monogenic inverse semigroups. Ac-
cording to [15, Theorem IX.3.11], each such semigroup is defined by exactly one of the following
relations, where k, ` are positive integers: (i) ak = a−1ak+1; (ii) aka−1 = a−1ak; (iii) ak = ak+`;
(iv) a = a. Those in (iv) are freely generated. Those in (i) — (iii) possess a kernel that is
bicyclic, infinite cyclic or finite cyclic, respectively. If k = 1 then that kernel is the entire
semigroup; if k ≥ 2, then the semigroup is an extension of its kernel by the quotient of the free
monogenic inverse semigroup modulo the ideal generated by ak (the quotient being a semigroup
of type (iii), with trivial kernel).

The elements of any monogenic inverse semigroup are expressible in the form (a−mam)ai(ana−n),
where m,n ≥ 0 and m + i + n ≥ 1 (with a0 representing an adjoined identity element here
and elsewhere in this paper), the expression being unique in the free case. Note that every
nonidempotent of such a semigroup is below some nonzero power of a, in the natural partial
order.

LEMMA 1.4 In any monogenic inverse semigroup 〈a〉, the generator a is a maximal element
in the partial order.

Proof. If a is idempotent, this is clear. Otherwise, suppose a ≤ b ∈ 〈a〉. Then, in view of
the description of the elements of 〈a〉 above, b ≤ ai for some nonzero integer i. If i < 0, then
since a−1 ≤ b−1 ≤ a−i, a = aa−1a ≤ a2−i, so we may assume i > 0. But then a = (aa−1)ai = ai

and so a = b. �

In the sequel, the semilattice of idempotents will frequently be a tree.

LEMMA 1.5 The semilattice of idempotents of a monogenic inverse semigroup A = 〈a〉 is a
tree if and only if it is of type (i), (ii) or (iii) above, with k ≤ 2.

Proof. If k = 1 then A is either a (cyclic) group or bicyclic (so that EA is a chain in the
latter case). If k = 2 then A is an ideal extension of a kernel K, which is a group or bicyclic
semigroup, by 〈a | a2 = 0〉 ∼= B2. Thus EA is obtained by adjoining two maximal idempotents
to EK and is therefore a tree.

To prove the converse, observe from the description of the monogenic inverse semigroups
provided above that in case (iv), and hence also when k ≥ 3 in cases (i) — (iii), the idempotent
aa−1 is strictly above the distinct idempotents (a−1a)(aa−1) and a2a−1, so EA is not a tree.�

2 Subsemilattices and full inverse subsemigroups.

2.1 Subsemilattices.

The unproven statements in the following are either well known or to be found in [1].

RESULT 2.1 Let E be a semilattice.
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(i) If A,B ∈ L(E), then AM∗B in L(E) if and only if A ∨ B = A ∪ B; A � B in L(E) if
and only if B ⊂ A and |A−B| = 1;

(ii) hence L(E) is always M∗-symmetric, whence lower semimodular;

(iii) lower semimodularity and M∗-symmetry of Co (E) are both equivalent to E being a tree,
and to the property that if A,B ∈ Co (E), then A � B in Co (E) if and only if B ⊂ A and
|A−B| = 1.

Proof. Only (i) needs proof. Suppose AM∗B in L(E) and x ∈ A ∨ B. Now B ∨ {x} ∈
[B,A∨B] so by M∗-symmetry, (A∩ (B∨{x}))∨B = B∨{x}. If x 6∈ B, it follows that x = ab,
for some a ∈ A ∩ (B ∨ {x}) and b ∈ B1. Now a 6∈ B, so a ≤ x and thus x = a ∈ A. �

RESULT 2.2 Let E be a semilattice. Modularity and distributivity of L(E) are both equivalent
to E being a chain. Modularity and distributivity of Co (E) are both equivalent to |E| ≤ 2.

Ershova [7] showed that any inverse semigroup S for which L(S) is modular must be a
Clifford semigroup with trivial structure mappings. In the case of Co (S), if |ES | ≤ 2, then
Co (S) = L(S), as remarked earlier, and so the same conclusion holds.

2.2 The lattice of full inverse subsemigroups.

The next result is the main general tool in the study of the lattice of full inverse subsemigroups.

RESULT 2.3 [11] Let S be an inverse semigroup. Then LF(S) is isomorphic to a subdirect
product of the lattices of full inverse subsemigroups of its principal factors, each of which is
isomorphic to an interval sublattice of LF(S).

The focus may therefore be on the simple and 0-simple cases. We begin with the completely
0-simple case. All these results may be found in [4], although the specializations to modularity
and distributivity were found much earlier.

RESULT 2.4 Let S be a completely 0-simple inverse semigroup that is not just a group with
adjoined zero. Then lower semimodularity, M∗-symmetry and modularity of LF(S) are all
equivalent to S being isomorphic to either B2 or B3. In the case of distributivity, only B2 is
allowed.

RESULT 2.5 If S is a 0-simple inverse semigroup that is not completely 0-simple, and LF(S)
is lower semimodular, then S has no zero divisors and LF(S) ∼= LF(S − 0), where S − 0 is
simple.

Recall the definitions of isolated subgroups and of the archimedean property from §1.3.

RESULT 2.6 If S is a simple inverse semigroup that is not a group, then LF(S) is lower
semimodular if and only if
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(a) L(H) is lower semimodular for every isolated subgroup H of S;

(b) every nonisolated subgroup of S is trivial;

(c) ES is archimedean in S and any D-class D of S contains at most two mutually incomparable
idempotents, each of which is maximal in the poset ED.

In that event, the maximum group quotient G = S/σ is abelian, in fact isomorphic to a subgroup
of the reals under addition.

The lattice LF(S) is M∗-symmetric [resp. modular] if and only if, in addition to the above,
L(H) is M∗-symmetric [resp. modular] for each isolated subgroup H, and G is locally cyclic.
In that event, G is isomorphic to a subgroup of the rationals.

The lattice LF(S) is distributive if and only if, in addition to all of the above, each isolated
subgroup is locally cyclic and S is E-unitary (equivalently, the poset ED is a chain for any
D-class D of S).

The bicyclic semigroup B is an example of a bisimple semigroup for which LF(B) is dis-
tributive.

3 Decompositions based on ES.

In the next section we shall show that if either of the lattices L(S) or Co (S) is lower semimod-
ular, then ES is neutral in that lattice. While there are many direct correspondences between
the two lattices, there are also some distinctions with significant consequences.

Throughout the sequel, S will be an inverse semigroup.

LEMMA 3.1 If x = e1a1 · · · enan for some e1, . . . , en ∈ ES , a1, . . . , an ∈ S, then x ≤ a1 · · · an.
Hence ES ∨A = ES ∪A↓ for any A ∈ L(S). Thus ES ∨A is an order ideal of S, whence convex,
and if A ∈ Co (S), then ES � A = ES ∨ A. The subsemigroup ES separates L(S) and therefore
also separates Co (S).

Proof. The first statement, which is well known, follows from iteration of the equation
ae = (aea−1)a, for any e ∈ ES , a ∈ S. The second statement is an immediate consequence.
Since ES is itself an order ideal, so is ES ∪A↓.

Observe that for any x ∈ S, if x ≤ a ∈ A and xx−1 ∈ EA, then x = (xx−1)a ∈ A. Thus
A = A↓ ∩EAR = (ES ∪ A↓) ∩ EAR = (ES ∨ A) ∩ EAR (where R denotes Green’s relation).
That ES separates L(S), and so also Co (S), is now clear. �

PROPOSITION 3.2 The following are equivalent:

(1) ES is distributive in L(S), that is, ES ∨ (A∩B) = (ES ∨A)∩ (ES ∨B) for all A,B ∈ L(S);

(2) for all a ∈ S, a↓⊆ ES ∪ 〈a〉;

(3) for every A ∈ L(S), ES ∨A = ES ∪A;
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(4) ES is completely distributive in L(S).

Denote by (1C) to (4C) the analogous statements with respect to Co (S). Then they are also
equivalent.

Proof. (1) ⇒ (2). Suppose a > b. Put A = 〈a〉 and B = 〈b〉. Since b = (bb−1)a,
b ∈ (ES ∨ A) ∩ (ES ∨ B) = ES ∨ (A ∩ B). If b 6∈ ES , then by Lemma 3.1, b ∈ (A ∩ B)↓. But,
according to Lemma 1.4, b is also maximal in B, so b ∈ A.

The implication (2)⇒ (3) is clear from Lemma 3.1. The remaining implications are obvious.
For Co (S), recall first that ES �A = ES ∨A for all A ∈ Co (S). Again, the only implication

that is not clear is (1C) ⇒ (2C). Putting A = 〈〈a〉〉 and B = 〈〈b〉〉 again yields b ∈ (A ∩ B)↓.
But b is maximal in 〈〈b〉〉, by Result 1.3, so again b ∈ A. �

In any inverse semigroup S, the implication (2)⇒ (2C) holds, since for any a ∈ S, 〈a〉 ⊆ 〈〈a〉〉.
Since Co (S) = L(S) whenever ES has height at most 2, the following example therefore exhibits
a minimal inverse semigroup in which (2) and (2C) are inequivalent.

EXAMPLE 3.3 Let Y be the semilattice obtained from two three-element chains by amalga-
mating their zeroes. Then the Munn semigroup TY satisfies (2C) but not (2). In the sequel it
will be shown that Co (TY ) is lower semimodular but L(TY ) is not.

Proof. Let Y = {e0 > e1 > 0} ∪ {f0 > f1 > 0}. As mentioned in the introduction, we
identify each idempotent 1e↓ with e itself. Let α be the isomorphism of e0↓ upon f0↓. Since
α2 = 0, 〈α〉 = {e0, f0, 0, α, α−1}. Then TY = Y ∪ {α, α−1, β, β−1}, where β is the restriction of
α to e1↓. Since α > β > 0, β ∈ 〈〈α〉〉. Together with α−1 > β−1 > 0, which is handled similarly,
these are only nontrivial orderings needing verification in order for (2C) to hold. On the other
hand, since β 6∈ 〈α〉, TY does not satisfy (2). �

There will be further discussion of the consequences of these properties, and further such
examples, in the discussion of dual distributivity, to which we now turn. Note that it follows
from the finitariness of the operations on an inverse semigroup that dual distributivity implies
complete dual distributivity.

PROPOSITION 3.4 The following are equivalent:

(1 ′) ES is dually distributive in L(S), that is, EA∨B = EA ∨ EB for all A,B ∈ L(S);

(2 ′) for all a ∈ S, a↓⊆ GS ∪ 〈a〉;

(3 ′) for all A ∈ L(S), ES ∨A ⊆ GS ∪A.

(4 ′) if A � B in L(S) then EA � EB in L(ES).

Denote by (1C ′) to (4C ′) the analogous statements with respect to Co (S). If ES is a tree, then
they are also equivalent. In fact the implications (2C ′) ⇔ (3C ′) ⇒ (1C ′) ⇒ (4C ′) hold in any
inverse semigroup.
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Proof. We first treat L(S). (1 ′) ⇒ (4 ′) is an instance of Lemma 1.2.
(4 ′) ⇒ (2 ′). Let a ∈ S and suppose b ∈ a↓ with b 6∈ 〈a〉. Put T = 〈a, b〉. By Zorn’s lemma,

there exists U ∈L (T ), maximal with respect to containing a but not b. Hence T � U . By (4 ′),
ET � EU . Now bb−1 6∈ U for, otherwise, b = bb−1a ∈ U ; similarly b−1b 6∈ U . By Result 2.1,
|ET − EU | = 1 and thus bb−1 = b−1b.

(2 ′) ⇔ (3 ′). This is clear from Lemma 3.1.
(3 ′) ⇒ (1 ′). Let A,B ∈ L(S). Any idempotent in A ∨ B can be expressed in the form

x1 · · ·xn = (x−1
n · · ·x−1

1 )(x1 · · ·xn), where each xj belongs to A ∪ B. We prove by induction
that for 1 ≤ j ≤ n the idempotent ej = (x−1

j · · ·x
−1
1 )(x1 · · ·xj) belongs to EA ∨ EB. Since

e1 = x1x
−1
1 , the basis step is clear. For j > 1, ej = x−1

j ej−1xj . Now by (3 ′) either ej−1xj ∈ GS
or ej−1xj ∈ A ∪ B. Since ej = (ej−1xj)−1(ej−1xj), then in the former case ej = ej−1(xjx−1

j )
and the induction hypothesis applies; and in the latter case ej ∈ A ∪B. This yields one of the
required inclusions; the other one is obvious.

Next we treat Co (S). Once more, (1C ′) ⇒ (4C ′) is an instance of Lemma 1.2 and (2C ′)
⇔ (3C ′) is immediate from Lemma 3.1.

The argument for (4C ′) ⇒ (2C ′) also proceeds analogously, except that in the case of
Co (ES), the implication ET � EU ⇒ |ET − EU | = 1 may require that ES be a tree, by virtue
of Result 2.1.

Finally, assume (3C ′) holds. By Lemma 3.1, if A ∈ Co (S) then ES � A = ES ∨ A. So (3 ′)
holds when restricted to Co (S), and thus (1 ′) holds likewise. It follows that if A,B ∈ Co (S),
then EA∨B = EA ∨ EB. Then Result 1.3 gives EA�B = EA � EB. �

Similarly to the remark following Proposition 3.2, the implication (2 ′) ⇒ (2C ′) holds in
any inverse semigroup. Thus, combining the first and last statements of the last proposition,
each of the statements (1 ′), . . . , (4 ′) implies the analogous statement (1C ′), . . . , (4C ′).

For the purposes of this paper, the hypothesis that ES be a tree in the second part of the
proposition is not restrictive. It will be shown in Example 3.10 that, without that hypothesis,
the implications in the final statement cannot be replaced by equivalences.

THEOREM 3.5 Neutrality of ES in L(S) is equivalent to (2): for all a ∈ S, a↓⊆ ES ∪ 〈a〉.
In that case, L(S) is isomorphic to the sublattice {(F,U) : U ⊆ ES ∪Fmax} of L(ES)×LF(S),
where Fmax is the greatest inverse subsemigroup of S whose semilattice of idempotents is F .

The entirely analogous statement holds with respect to Co (S), with (2C) in place of (2), 〈〈a〉〉
in place of 〈a〉, and Co (ES) in place of L(ES).

Proof. It is clear that conditions (2) and (2C) in Proposition 3.2 imply the respective
conditions (2 ′) and (2C ′) in Proposition 3.4. In view of the validity of the implication (2C ′)
⇒ (1C ′) in any inverse semigroup, distributivity of ES in either L(S) or Co (S) always implies
dual distributivity, and thus by Lemma 3.1 is equivalent to neutrality, in the respective lattices.

In addition, noting the comment preceding Proposition 3.4, ES is actually completely dually
distributive in each case. The description of the images in the respective direct products is then
an immediate consequence of Lemma 1.1. �
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An alternative description of the images in the respective direct products may also be found
by applying the order dual of Lemma 1.1.

As noted above, in inverse semigroups for which ES has height 2, the lattices L(S) and
Co (S) coincide. Moreover in that case if a > b, then b necessarily belongs to the group kernel,
so (2 ′) is automatically satisfied. Any such semigroup is an ideal extension of its group kernel
by a primitive inverse semigroup. (A primitive inverse semigroup is a union of completely
0-simple inverse semigroups, identifying the common zero elements.)

In the case of L(S), (2 ′) imposes significant restrictions on S.

PROPOSITION 3.6 For a monogenic inverse semigroup A = 〈c〉, (2 ′) and (2) are equiva-
lent, and equivalent to the property that c3 belongs to a subgroup of A (that is, in the terminology
of §1.3, A is of type (ii) or (iii) with k ≤ 3).

Hence a 0-simple inverse semigroup satisfies (2 ′) if and only if it is completely 0-simple;
and a simple inverse semigroup satisfies (2 ′) if and only if it is a group.

Proof. Put b = (c−1c)c2 ≤ c2. If c ∈ GA or c2 ∈ GA, then c3 ∈ GA, so assume otherwise.
Supposing A satisfies (2 ′), then b ∈ GA ∪ 〈c2〉. On the one hand, if b ∈ GA then c−3c3 =
b−1b = bb−1 = (c−1c)(c2c−2). Conjugating by c3 yields c3c−3 = c5c−5; conjugating by c−2

yields c−5c5 = c−3c3. In combination, c3 H c5 and so c3 ∈ GA. On the other hand, if b ∈ 〈c2〉,
then c−3c3 = b−1b ∈ 〈c2〉. Now in this case since c2 6∈ GA we have c−4c4 ≺ c−2c2 in E〈c2〉.
Since c−3c3 = c−2c2 or c−3c3 = c−4c4 and since L is a right congruence, in either case c3 L c4.
Dualizing this entire argument, either c3 ∈ GA or c3 R c4. But if c3 H c4, then again c3 ∈ GA.

Conversely, suppose c3 ∈ GA and denote by e the identity of the subgroup Hc3 . We prove
(2), which then implies (2 ′). If A is a group, this is obvious. Otherwise, either Jc > Jc2 = He

or Jc > Jc2 > Jc3 = He. Suppose a > b in A, with b 6∈ EA. In either case, if a ∈ Jc, then a = c
or a = c−1, whence b ∈ 〈a〉. This covers the former case. In the latter, there remains only the
situation that a ∈ Jc2 and b ∈ He. But then a2 ∈ He, so e ∈ 〈a〉 and thus the same is true of
b = ea.

Turning to the final statements, it is well known that any 0-simple semigroup in which
some power of every element belongs to a subgroup is completely 0-simple (because otherwise
it contains a bicyclic subsemigroup). That every completely 0-simple semigroup satisfies (2 ′)
was shown prior to this proposition. �

Comparing the next two results with the previous one demonstrates how much stronger is
(2 ′) than (2C ′).

PROPOSITION 3.7 Every monogenic inverse semigroup A = 〈c〉 satisfies (2C), and there-
fore (2C ′). Thus EA is neutral in Co (A).

Proof. Suppose a > b ∈ A, with b 6∈ EA. Thus a 6∈ EA and so a = ecn for some e ∈ EA,
n 6= 0. Further, since a−1 > b−1 and (2C) is (left-right) self-dual, we may assume that n > 0.
We show that EA ⊆ E〈a〉 ↑. Since bb−1 ≤ aa−1, this shows that bb−1 ∈ 〈〈a〉〉, whence the
same is true of b = (bb−1)a. Consider first an idempotent of the form cmc−m, where m > 0.
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Now from a ≤ cn it follows that am ≤ cmn and so ama−m = fcmnc−mn for some f ∈ EA.
Then ama−m ≤ cmc−m. Similarly a−kak ≤ c−kck for every k > 0. But every idempotent of 〈c〉
is either of one of these forms or a product of one of each, and so above an idempotent of 〈〈a〉〉. �

The properties (2C) and (2C ′) belong to a class of “archimedean” properties that have
arisen in a number of situations associated with lattices of inverse subsemigroups. In the
case of particular relevance in the sequel, where ES is a tree and S is combinatorial, the two
of particular significance are the following, which were introduced in [13] (also see [3]): S is
pseudoarchimedean if no idempotent is strictly below every idempotent of a free monogenic or
bicyclic inverse subsemigroup of S; S is faintly archimedean if whenever an idempotent e is
strictly below every idempotent of a bicyclic or free monogenic inverse subsemigroup 〈a〉 of S,
then e < a. Note that if ES is a tree, S cannot contain a free monogenic inverse subsemigroup
(see Lemma 1.5). Clearly if S is pseudoarchimedean then it is faintly archimedean.

PROPOSITION 3.8 If ES is a tree, then ES is archimedean in S if and only if S is pseu-
doarchimedean. If, in addition, S is combinatorial, then S satisfies (2C) if and only if it is
faintly archimedean and, therefore, whenever ES is archimedean in S.

Hence, under the additional assumption that its semilattice of idempotents is a tree, any
simple inverse semigroup S for which LF(S) is lower semimodular satisfies (2C).

Proof. Throughout, we assume that ES is a tree. Let a ∈ S, a 6∈ ES . As noted above,
〈a〉 cannot be free. Let e ∈ ES . Then since e(aa−1) ≤ aa−1 and ana−n ≤ aa−1 for all n > 0,
either e ∈ E〈a〉↑ or e(aa−1) < ana−n for all such n. In combination with the dual argument, it
follows that either e ∈ E〈a〉↑ or e(aa−1)(a−1a) is strictly below every idempotent of 〈a〉. The
first statement is now immediate from the respective definitions.

It also follows that if a > b, then either b ∈ 〈〈a〉〉, or bb−1 < ana−n and b−1b < a−nan for
all n > 0 (these options being mutually exclusive). Now according to [13, Proposition 3.3], if
S is combinatorial, then it is faintly archimedean if and only if whenever bb−1 < ana−n and
b−1b < a−nan for all n > 0, then b ∈ ES . Hence this property is equivalent to (2C).

To deduce the final statement, observe that such a semigroup is combinatorial and ES is
archimedean in S, by Result 2.6. �

EXAMPLE 3.9 Property (2C) is not equivalent to the property that ES be archimedean in
S, even in combinatorial, bisimple inverse semigroups whose semilattices of idempotents are
totally ordered.

Proof. Let S be the Munn semigroup TE , where E = Cω × Cω, with (i, j) ≥ (k, l) if and
only if either i = k and j ≤ l, or i < k. (That is, E is the ordinal product of two copies of Cω.)
Note that E is a chain satisfying the ACC, so by [14, Theorem 1.4], TE is combinatorial. For
each i ∈ Cω, put Ei = {(i, j) : j ∈ Cω}.

Let α ∈ S, with domain (i, j)↓ and range (k, l)↓. Since E is a chain and S is combinatorial,
if α is nonidempotent then either αα−1 > α−1α or the opposite inequality holds. Without
generality we may assume the former.
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If k = i then j < l. There is a unique member of the bicyclic subsemigroup TEi that maps
(i, j) to (i, l); it extends to an isomorphism of (i, j)↓ upon (i, l)↓, by fixing every Ej , j > i.
By the combinatorial property, this extension must be α itself. Hence for every idempotent
g = 1(m,n) of S, either m ≤ i and g ≥ α−rαr for some positive integer r (using the properties
of the bicyclic semigroup TEi), so that gα ∈ 〈〈α〉〉, or m > i and gα = g.

Hence (2C ′) (equivalently (2C)) holds in this case. But at the same time, this calculation
proves that ES is not archimedean in S since, for m > i, g < α−rαr for every positive integer
r.

Next, consider α for which k > i. Then for r > 0, the range of αr is (i + r(k − i), `′)↓ for
some `′. Hence for any idempotent g as above, g > α−rαr for some r. So property (2C ′) also
holds in this case.

Clearly, every principal ideal of E is isomorphic to E itself, so E is uniform and TE is
bisimple. �

The following example was cited after Proposition 3.4.

EXAMPLE 3.10 Let C = 〈c | c3 = c2〉, let Y be the two-element semilattice 1 > 0, and put
S = C × Y . The implication (1C ′) ⇒ (3C ′) fails to hold in S.

Proof. In the terminology of §1.3, C ∼= B2; C consists of the nonidempotents c and c−1 and
the idempotents cc−1, c−1c and c2 = (cc−1)(c−1c). To simplify notation, put A = C × {1} and
a = (c, 1); and put B = C × {0} and b = (c, 0). Note that a > b, but b 6∈ GS ∪ 〈〈a〉〉, so (2C ′)
(and thus (3C ′)) fails in S. Now let U, V ∈ Co (S) and assume that U and V are incomparable
under inclusion. If a ∈ U , then A ⊆ U and so some idempotent e of B belongs to V . Therefore
b2 = ea2 ∈ U ∨ V and b ∈ [b2, a] ∈ U � V , that is, U � V = S; a slight modification of this
argument yields EU �EV = ES = EU�V . If a ∈ V , the same conclusion holds. In the case that
a 6∈ U ∪ V , then in fact U, V ⊆ B ∪ ES . But B ∪ ES satisfies (2C ′), its only nonidempotents
being the generators b and b−1 of B, so by the last sentence of Proposition 3.4, EU�V = EU �EV
in this case as well. �

Finally, it is worth remarking that (2 ′) and (2C ′) imply that S is cryptic, that is, Green’s
relation H is a congruence. It follows that GS , the union of the subgroups of S, is an inverse
subsemigroup and order ideal. In a continuation [5], the authors will pursue a similar investi-
gation of the role of GS within L(S) and Co (S), with applications to join semidistributivity. It
will also be shown there that if either of these lattices is lower semimodular, then an alternative
decomposition of the lattice exists, in terms of Clifford semigroups and combinatorial inverse
semigroups.

4 Semimodularity of Co (S) or L(S).

PROPOSITION 4.1 Let S be any inverse semigroup. If L(S) is lower semimodular, then
ES is distributive, whence neutral, in L(S). If Co (S) is lower semimodular, then the same
conclusion holds in Co (S).
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Proof. We first consider L(S). It suffices to prove that (2) holds in Proposition 3.2. Observe
first that S satisfies (4 ′) of Proposition 3.4, for if A � B and EA 6= EB, then A = B ∨EA � B
and so EA � EA ∩ B = EB. By that proposition, if a ∈ S and a > b, then b ∈ He for some
e ∈ ES . If b 6∈ 〈a〉, let T = 〈a, b〉 so that, as in the proof of (4 ′)⇒ (2 ′) in Proposition 3.4, there
exists U ∈L (S) such that T � U , b 6∈ U , and by lower semimodularity, 〈b〉 � U ∩〈b〉. But since
〈b〉 is a subgroup and e 6∈ U (otherwise b = ea ∈ U), so that U ∩ 〈b〉 = ∅, this is possible only if
〈b〉 = {e}, that is, b ∈ ES .

The argument in the case of Co (S) proceeds for the most part analogously, noting first that
by Result 2.1, ES is a tree and so all the properties in Proposition 3.4 are equivalent. In the
notation of the previous paragraph, b ∈ He and so 〈〈b〉〉 = 〈b〉 and Co (He) = L(He). Hence
when we arrive at the analogous covering 〈〈b〉〉 � U ∩〈〈b〉〉, the rest of the proof follows verbatim.
�

The following theorem combines the previous proposition with Theorem 3.5 and Result 2.1.

THEOREM 4.2 Let S be an inverse semigroup. Then L(S) is lower semimodular if and only
if LF(S) is lower semimodular and S satisfies (2): for all a ∈ S, a↓⊆ ES ∪ 〈a〉. In that case,
L(S) is isomorphic to the sublattice {(F,U) : U ⊆ ES ∪ Fmax} of L(ES)× LF(S).

The lattice Co (S) is lower semimodular if and only if ES is a tree, LF(S) is lower semi-
modular and S satisfies (2C): for all a ∈ S, a↓⊆ ES ∪ 〈〈a〉〉. The analogous decomposition of
Co (S) holds if L(ES) is replaced by Co (ES).

Independence of the respective conditions stated in this theorem is readily verified by con-
sidering Clifford semigroups. For such a semigroup S, applying Result 2.3, LF(S) is lower
semimodular if and only if the same is true for each subgroup. The properties (2) and (2C) are
each equivalent to the property that every structure homomorphism be trivial (that is, maps
to the identity element). Example 3.9 demonstrates that, even in the bisimple case, (2C) and
the property that ES be a tree (even a chain) do not together imply lower semimodularity of
LF(S). Since (2) implies (2C), we immediately obtain the following.

COROLLARY 4.3 If L(S) is lower semimodular and ES is a tree, then Co (S) is lower
semimodular.

4.1 Lower semimodularity of Co (S).

It remains to combine the above decomposition and the additional restrictions on the structure
of S imposed by the interaction of (2) and (2C) with the principal factors of S.

In the case of Co (S), observe that the monogenic inverse subsemigroups are severely re-
stricted, by virtue of Lemma 1.5. We separate the technical details in a lemma, since it will
find application elsewhere. Recall that the set of J -classes of any semigroup is partially ordered
under the relation J1 ≤ J2 if J1 ⊆ S1J2S

1.

LEMMA 4.4 Let S be an inverse semigroup for which ES is a tree and LF(S) is lower
semimodular. Then S satisfies (2C) [resp. (2C ′)] if and only if whenever e ∈ ES, Je ∈ L(S),
f < e and Jf < Je, then af = fa = f [resp. fa ∈ Hf ] for all a ∈ Je.
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Proof. To prove necessity, suppose e, a, f are as given. Now e(aa−1) ≤ e, so since ES is
a tree, e(aa−1) > f , whence fa R f . Since Je ≤ S, 〈〈a〉〉 ⊆ Je. Thus if S satisfies (2C ′) then
fa ∈ GS and so fa ∈ Hf . If S satisfies (2C), then fa ∈ ES and so fa = f .

Conversely, suppose a > b in S. If Ja = Jb, then the principal factor is not completely
0-simple so Ja ∈ L(S) by Result 2.5 and, according to the last part of Proposition 3.8, Ja
satisfies (2C), that is, b ∈ ES ∪〈〈a〉〉. Otherwise, Ja > Jb. If Ja < S, then the stated hypotheses,
with e = aa−1 and f = bb−1, imply that since b = (bb−1)a, either b = bb−1 ∈ ES or b ∈ Hbb−1 ,
respectively. The remaining case is where Ja 6∈ L(S). Then aa−1 ‖ a−1a and, according to
Lemma 1.5, the kernel K of 〈a〉 is either a group or a bicyclic semigroup, which is easily seen
to be generated in either case by a2a−1 or by a−1a2. In either case, by Results 2.4 and 2.5, the
associated J -class is a subsemigroup.

Assume K = 〈a2a−1〉, the other case being dual. Now aa−1 > bb−1 and aa−1 > a2a−2, so
bb−1 and a2a−2 are comparable, since ES is a tree. If bb−1 ≥ a2a−2, then b ∈ 〈〈a〉〉. Otherwise
b ≤ (a2a−2)a = a2a−1 and so b ∈ ES or b ∈ GS , as shown in the previous paragraph. �

This immediately yields the main result of this paper for Co (S).

THEOREM 4.5 The lattice Co (S) is lower semimodular if and only if: ES is a tree; LF(S)
is lower semimodular, so that for each J -class J of S, either its principal factor PF (J) is
isomorphic to B2 or B3, or J itself is a simple inverse subsemigroup that is either a group or
is as described in Result 2.6 (with its semilattice a tree); whenever e ∈ ES, Je ∈ L(S), f < e
and Jf < Je, then af = fa = f for all a ∈ Je.

Theorem 4.5 gives an explicit description in many cases of interest. For instance, if S is
finite then J -classes that are subsemigroups must be groups. More generally, this is the case
for completely semisimple inverse semigroups: those that contain no bicyclic subsemigroups. If,
further, S is combinatorial, then the last condition in the theorem is automatically satisfied,
yielding the following simple characterization.

COROLLARY 4.6 If S is both combinatorial and completely semisimple, then Co (S) is lower
semimodular if and only if ES is a tree and every J -class of S has at most three idempotents.

Theorem 4.5 shows that for the semigroups under consideration, the J -classes that are
subsemigroups act trivially on the order ideals that they generate. Further properties of the
products associated with such J -classes are provided by the following.

COROLLARY 4.7 Suppose Co (S) is lower semimodular and a, b ∈ S. If Ja, Jb ∈ L(S) and
Ja ‖ Jb in the poset of J -classes, then ab ∈ ES.

Proof. Write ab = āb̄, where ā = a(bb−1) ≤ a and b̄ = (a−1a)b ≤ b. By Theorem 4.5 (or
direct from (2C)), ā, b̄ ∈ ES , so ab ∈ ES . �

The following example shows that when the J -classes are not inverse subsemigroups, the
products are less constrained.
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EXAMPLE 4.8 Let Z be the tree in Figure 1 and let U be the inverse subsemigroup of TZ
generated by α and γ, the isomorphisms of e0↓ upon f0↓, and g0↓ upon h0↓, respectively. Then
Co (U) is lower semimodular, Jα ‖ Jγ, and αγ 6∈ ES ∪ 〈〈α〉〉 ∪ 〈〈γ〉〉. The lattice Co (TZ) is not
lower semimodular.

Proof. Clearly 〈〈α〉〉 ∼= 〈〈γ〉〉 ∼= TY , where Y is the semilattice in Example 3.3. A straight-
forward calculation, invoking the details from that example, reveals that U = 〈〈α〉〉 ∪ 〈〈γ〉〉 ∪
{αγ, (αγ)−1}, where αγ is the isomorphism of e1↓ upon h1↓. The only intersection of the three
components of this union consists of the idempotents 0 and f1 = g1.

Then PF (Jα) ∼= PF (Jγ) ∼= B2 and PF (Jαγ) ∼= B3. According to Corollary 4.6, Co (U) is
therefore lower semimodular.

Since in TZ , PF (Jα) ∼= B4, Co (TZ) is not lower semimodular. �
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Figure 1: The tree Z

In a different direction, we may consider the simple inverse semigroups that are not groups.
In the case of bisimple inverse semigroups, it follows from Result 2.6 that when LF(S) is lower
semimodular, ES must always be a tree. Hence lower semimodularity of Co (S) and LF(S) are
equivalent. Such inverse semigroups S were completely determined in [4]. With precisely one
exception, ES is in fact always a chain. The lattice Co (B) was explicitly constructed in [3,
Example 6.9].

For simple inverse semigroups in general, lower semimodularity of Co (S) is equivalent to
the conjunction of lower semimodularity of LF(S) with the property that ES be a tree. An
example was given in [12] of a simple inverse semigroup S such that LF(S) is distributive —
so that ED is a chain for each D-class — but ES itself is not a tree. [4, Example 11.1] exhibits
a simple, non-bisimple, inverse semigroup S for which LF(S) is modular and ES is a tree but
is not a chain. Thus Co (S) is lower semimodular.

4.2 Lower semimodularity of L(S).

We now consider L(S). In this case, both the monogenic inverse subsemigroups and the prin-
cipal factors are severely restricted, by virtue of Proposition 3.6. Recall that Bn denotes
the combinatorial Brandt semigroup with n nonzero idempotents. It was proved in [12] that
LF(Bn) ∼= Πn, the full partition lattice on a set of n elements.

THEOREM 4.9 The lattice L(S) is lower semimodular if and only if (i) each J -class either
is a group with lower semimodular subgroup lattice, or its principal factor is isomorphic to B2
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or B3, and (ii) if a > b in S, then either b ∈ ES or aa−1 ‖ a−1a, a3 ∈ GS, and either b = a2a−1

or b = a−1a2, or b = a3a−2.
In that event, L(S) is isomorphic to a subdirect product of L(ES), the subgroup lattices of

the nontrivial maximal subgroups of S (if any), and possibly copies of the full partition lattices
Π2 and/or Π3.

Proof. We apply the first part of Theorem 4.2. Applying Proposition 3.6 to the results of
§2.2 yields the stated restriction on the principal factors. If a > b and aa−1 = a−1a, then only
b ∈ ES can hold. Otherwise aa−1 ‖ a−1a. Now by Proposition 3.6, a3 ∈ GS . Thus, considering
the description of the monogenic inverse semigroups in §1.3, the only instances of (2) to be
verified are those stated in the theorem. �

From this result and Result 2.2 one may easily deduce Ershova’s determination of the inverse
semigroups for which L(S) is modular or distributive, as cited in §2.1: for in either case, ES
must be a chain and therefore, from the theorem, the principal factors are groups with zero, or
groups, and a > b implies b ∈ ES , equivalently, every structure homomorphism is trivial.

As was the case for Theorem 4.5, Theorem 4.9 imposes severe restrictions on the products
in S.

COROLLARY 4.10 Suppose L(S) is lower semimodular and a, b ∈ S. Then ab ∈ GS ∪ 〈a〉 ∪
〈b〉, except in the case that a, b, ab 6∈ ES and a−1a = bb−1, so that ab ∈ Ra∩Lb. The exceptional
case occurs if and only if S has a principal factor isomorphic to B3.

Proof. If a ∈ ES or b ∈ ES then ab ≤ b or ab ≤ a, respectively, and the desired result follows
from (2). Otherwise, as in the proof of Corollary 4.7, write ab = āb̄, where ā = a(bb−1) ≤ a,
b̄ = (a−1a)b ≤ b and ab ∈ Rā ∩ Lb̄. Again, if either ā or b̄ is idempotent, the result follows.
Otherwise, ā ∈ 〈a〉 and b̄ ∈ 〈b〉.

Suppose ā < a. If ā ∈ GS , then the subgroup Hā is nontrivial and so isolated, whence
contains ab. If ā 6∈ GS then, by the theorem, only the cases ā = a2a−1 or ā = a−1a2 remain.
In either case, within 〈a〉 itself, PF (Ja2) ∼= B3. Applying Theorem 4.9, within S itself Jā ⊂ 〈a〉
and so ab ∈ 〈a〉. A similar conclusion holds if b̄ < b.

The only remaining case to consider is where ā = a and b̄ = b: but that is precisely the
exceptional case in the statement. In that case, the idempotents aa−1, a−1a = bb−1 and b−1b
are distinct, so PF (Ja) ∼= B3. Conversely, if S has such a principal factor, then a and b may
be found with the requisite property. �

Our final example shows that a product ab may lie in GS without lying in ES∪〈a〉∪〈b〉. Let
T = 〈a, b, g | g7 = g, a2a−1 = g2, b2b−1 = g3, ab = ba = g〉. Then T has as its kernel the cyclic
group K = 〈g〉 of order six, and T/K is the 0-direct union of two copies of B2. (Alternatively,
T is the retract extension defined by the partial homomorphisms induced by a→ g2, b→ g3).

The only nontrivial orderings in T are a > g2, a−1 > g4, b > g3, b−1 > g3. Since 〈a〉 =
Ja ∪ 〈g2〉 and 〈b〉 = Jb ∪ 〈g3〉, it follows that (2) is satisfied. Hence L(T ) is lower semimodular.
Here ab = g5 6∈ ET ∪ 〈a〉 ∪ 〈b〉.
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4.3 M∗-symmetry.

Since M∗-symmetry implies lower semimodularity, the decompositions in Theorem 4.2 remain
valid. Moreover, in the convex case, Co (ES) is M∗-symmetric if and only if ES is a tree,
once more, by Result 2.1. Therefore the description in this case is obtained from Theorem 4.5
mutatis mutandi. Note, however, that as stated in Result 2.6, the simple semigroups for which
the lattice LF is M∗-symmetric are precisely those for which the lattice is modular. In [4], it
is shown that this class is properly contained in the class of simple semigroups for which LF is
lower semimodular.

In the case of L(S), the description is obtained from Theorem 4.9 mutatis mutandi.
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